bibtype C - Conference Paper (international conference)
ARLID 0410782
utime 20240103182238.8
mtime 20060210235959.9
ISBN 0-7695-1417-0
title (primary) (eng) Perfect sequences for belief networks representation
publisher
place Los Alamitos
name IEEE Computer Society Press
pub_time 2001
specification
page_count 10 s.
serial
title Proceedings of the 13th IEEE International Conference on Tools in Artificial Intelligence
page_num 87-96
keyword belief networks
keyword probability and possibility theories
keyword operators of composition
author (primary)
ARLID cav_un_auth*0101118
name1 Jiroušek
name2 Radim
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101223
name1 Vejnarová
name2 Jiřina
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12A
cas_special
project
project_id OK 403
agency GA MŠk
ARLID cav_un_auth*0031602
project
project_id KONTAKT 1999-24
agency AKTION
country AT
research AV0Z1075907
abstract (eng) Most approaches used to represent multidimensional probability distributions are based on graphical Markov modelling. Here we present another technique - we describe a process by which a multidimensional distribution can be composed from a "generating sequence" - a sequence of lowdimensional distributions. The main advantage of this approach is that the same apparatus based on operators of composition can be applied for description of both probabilistic and possibilistic models.
action
ARLID cav_un_auth*0212887
name IEEE International Conference on Tools in Artificial Intelligence /13./
place Dallas
country US
dates 07.11.2001-09.11.2001
RIV BA
department MTR
permalink http://hdl.handle.net/11104/0130869
ID_orig UTIA-B 20010251
arlyear 2001
mrcbU10 2001
mrcbU10 Los Alamitos IEEE Computer Society Press
mrcbU12 0-7695-1417-0
mrcbU63 Proceedings of the 13th IEEE International Conference on Tools in Artificial Intelligence 87 96