bibtype J - Journal Article
ARLID 0410787
utime 20240103182239.2
mtime 20060210235959.9
title (primary) (eng) Feature selection toolbox software package
specification
page_count 6 s.
serial
ARLID cav_un_epca*0257389
ISSN 0167-8655
title Pattern Recognition Letters
volume_id 23
volume 4 (2002)
page_num 487-492
publisher
name Elsevier
keyword pattern recognition
keyword feature selection
keyword loating search algorithms
author (primary)
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101171
name1 Novovičová
name2 Jana
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101197
name1 Somol
name2 Petr
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 09K
COSATI 12B
cas_special
project
project_id GA402/01/0981
agency GA ČR
ARLID cav_un_auth*0008962
research CEZ:AV0Z1075907
abstract (eng) Recent advances in the statistical methodology for selecting optimal subsets of features for data representation and classification are presented. The paper attempts to provide a guideline which approach to choose with respect to the extent of a priori knowledge of the problem. Two basic approaches are reviewed and the conditions under which they should be used are specified. A consulting system aimed to guide a user to choose a proper method for the problem at hand is being prepared.
RIV BB
department RO
permalink http://hdl.handle.net/11104/0130874
ID_orig UTIA-B 20020001
arlyear 2002
mrcbU63 cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 23 č. 4 2002 487 492 Elsevier