| bibtype |
J -
Journal Article
|
| ARLID |
0410893 |
| utime |
20240103182246.9 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
Linear matrix inequalities for robust strictly positive real design |
| specification |
|
| serial |
| ARLID |
cav_un_epca*0256720 |
| ISSN |
1057-7122 |
| title
|
IEEE Transaction on Circuits and Systems |
| volume_id |
49 |
| volume |
7 (2002) |
| page_num |
1017-1020 |
|
| keyword |
linear matrix inequalities |
| keyword |
polynomial |
| keyword |
strictly positive real |
| author
(primary) |
| ARLID |
cav_un_auth*0101104 |
| name1 |
Henrion |
| name2 |
Didier |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| COSATI |
09I |
| cas_special |
| project |
| project_id |
GA102/02/0709 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0004118 |
|
| project |
| project_id |
ME 427 |
| agency |
GA MŠk |
| ARLID |
cav_un_auth*0028532 |
|
| research |
CEZ:AV0Z1075907 |
| abstract
(eng) |
A necessary and sufficient condition is proposed for the existence of a polynomial p(s) such that the rational function p(s)/q(s) is robustly strictly positive real when q(s) is a given Hurwitz polynomial with polytopic uncertainty. It turns out that the whole set of candidates p(s) is a convex subset of the cone of positive semidefinite matrices, resulting in a straightforward strictly positive real design algorithm based on linear matrix inequalities. |
| RIV |
BC |
| department |
TŘ |
| permalink |
http://hdl.handle.net/11104/0130980 |
| ID_orig |
UTIA-B 20020107 |
| arlyear |
2002 |
| mrcbU63 |
cav_un_epca*0256720 IEEE Transaction on Circuits and Systems 1057-7122 Roč. 49 č. 7 2002 1017 1020 |
|