bibtype J - Journal Article
ARLID 0410954
utime 20240103182251.3
mtime 20060210235959.9
title (primary) (eng) The least weighted squares I. The asymptotic linearity of normal equations
specification
page_count 28 s.
serial
ARLID cav_un_epca*0293025
ISSN 1212-074X
title Bulletin of the Czech Econometric Society
volume_id 9
volume 15 (2002)
page_num 31-58
keyword the least weighted squares
keyword robust regression
keyword asymptotic normality and representation
author (primary)
ARLID cav_un_auth*0101225
name1 Víšek
name2 Jan Ámos
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12A
cas_special
project
project_id 255/2002/A EK /FSV
agency GA UK
country CZ
project
project_id KSK1019101
agency GA AV ČR
ARLID cav_un_auth*0000219
research CEZ:AV0Z1075907
abstract (eng) For the least weighted squares we show that normal equations may be asymptotically approximated by a form which is linear in regression parameters. The proof employs Skorohod embedding into Wiener process. The asymptotic linearity of the normal equations allows (it is done in the part II) to derive asymptotic representation of the estimator and its asymptotic normality.
RIV BA
department SI
permalink http://hdl.handle.net/11104/0131041
ID_orig UTIA-B 20020168
arlyear 2002
mrcbU63 cav_un_epca*0293025 Bulletin of the Czech Econometric Society 1212-074X Roč. 9 č. 15 2002 31 58