bibtype |
J -
Journal Article
|
ARLID |
0411069 |
utime |
20240103182259.5 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
PENNON: A code for convex nonlinear and semidefinite programming |
specification |
|
serial |
ARLID |
cav_un_epca*0254588 |
ISSN |
1055-6788 |
title
|
Optimization Methods & Software |
volume_id |
18 |
volume |
3 (2003) |
page_num |
317-333 |
publisher |
|
|
keyword |
convex programming |
keyword |
semidefinite programming |
keyword |
large-scale problems |
author
(primary) |
ARLID |
cav_un_auth*0101131 |
name1 |
Kočvara |
name2 |
Michal |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0021060 |
name1 |
Stingl |
name2 |
M. |
country |
DE |
|
COSATI |
12A |
cas_special |
project |
project_id |
GA201/00/0080 |
agency |
GA ČR |
ARLID |
cav_un_auth*0005674 |
|
project |
project_id |
03ZOM3ER |
agency |
BMBF |
country |
DE |
ARLID |
cav_un_auth*0046476 |
|
research |
CEZ:AV0Z1075907 |
abstract
(eng) |
We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in PENNON and details of its implementation. Results of numerical tests and comparison with other optimization codes are presented. |
RIV |
BB |
department |
MTR |
permalink |
http://hdl.handle.net/11104/0131156 |
ID_orig |
UTIA-B 20030056 |
arlyear |
2003 |
mrcbU63 |
cav_un_epca*0254588 Optimization Methods & Software 1055-6788 1029-4937 Roč. 18 č. 3 2003 317 333 Taylor & Francis |
|