bibtype J - Journal Article
ARLID 0411095
utime 20240903170412.0
mtime 20060210235959.9
title (primary) (eng) Conditional probabilities and permutahedron
specification
page_count 15 s.
serial
ARLID cav_un_epca*0250789
ISSN 0246-0203
title Annales de L Institut Henri Poincare-Probabilites Et Statistiques
volume_id 39
volume 4 (2003)
page_num 687-701
publisher
name Institute of Mathematical Statistics
keyword conditional probability space
keyword permutahedron
keyword lattice of faces
author (primary)
ARLID cav_un_auth*0101161
name1 Matúš
name2 František
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12A
cas_special
project
project_id IAA1075104
agency GA AV ČR
ARLID cav_un_auth*0001799
project
project_id GA201/01/1482
agency GA ČR
ARLID cav_un_auth*0005723
research CEZ:AV0Z1075907
abstract (eng) The conditional probabilities of finite conditional probability spaces are considered for points of a smooth manifold of conditional charges. A linear diffeomorphism on the manifold is constructed so that the conditional probabilities map bijectively onto a permutahedron. The facial structure of the permutahedron corresponds to the ways conditional probability spaces decompose. A new global inversion lemma is devised.
RIV BA
department MTR
permalink http://hdl.handle.net/11104/0131182
ID_orig UTIA-B 20030082
arlyear 2003
mrcbU63 cav_un_epca*0250789 Annales de L Institut Henri Poincare-Probabilites Et Statistiques 0246-0203 Roč. 39 č. 4 2003 687 701 Institute of Mathematical Statistics