bibtype J - Journal Article
ARLID 0411116
utime 20240103182303.0
mtime 20060210235959.9
title (primary) (eng) Higher-order convex approximations of Young measures in optimal control
specification
page_count 25 s.
serial
ARLID cav_un_epca*0250595
ISSN 1019-7168
title Advances in Computational Mathematics
volume_id 19
volume 1 (2003)
page_num 73-97
keyword Young measures
keyword approximation
keyword error estimation
author (primary)
ARLID cav_un_auth*0213045
name1 Matache
name2 A. M.
country CH
author
ARLID cav_un_auth*0101187
name1 Roubíček
name2 Tomáš
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213046
name1 Schwab
name2 Ch.
country CH
COSATI 12C
cas_special
project
project_id GA201/00/0768
agency GA ČR
ARLID cav_un_auth*0005685
project
project_id IAA1075005
agency GA AV ČR
ARLID cav_un_auth*0012782
research CEZ:AV0Z1075907
abstract (eng) The general theory of approximation of (possibly generalized) Young measures is presented, and concrete cases are investigated. An adjoint-operator approach, combined with quasi-interpolation of test integrands, is systematically used. Applicability is demonstrated on an optimal control problem for an elliptic system, together with 1-dimensional illustrative calculations of various options.
RIV BA
department MTR
permalink http://hdl.handle.net/11104/0131203
ID_orig UTIA-B 20030103
arlyear 2003
mrcbU63 cav_un_epca*0250595 Advances in Computational Mathematics 1019-7168 1572-9044 Roč. 19 č. 1 2003 73 97