bibtype |
J -
Journal Article
|
ARLID |
0411117 |
utime |
20240103182303.1 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Multichannel blind iterative image restoration |
specification |
|
serial |
ARLID |
cav_un_epca*0253235 |
ISSN |
1057-7149 |
title
|
IEEE Transactions on Image Processing |
volume_id |
12 |
volume |
9 (2003) |
page_num |
1094-1106 |
publisher |
name |
Institute of Electrical and Electronics Engineers |
|
|
keyword |
conjugate gradient |
keyword |
half-quadratic regularization |
keyword |
multichannel blind deconvolution |
author
(primary) |
ARLID |
cav_un_auth*0101209 |
name1 |
Šroubek |
name2 |
Filip |
institution |
UTIA-B |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101087 |
name1 |
Flusser |
name2 |
Jan |
institution |
UTIA-B |
full_dept |
Department of Image Processing |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
COSATI |
09K |
cas_special |
project |
project_id |
GA102/00/1711 |
agency |
GA ČR |
ARLID |
cav_un_auth*0004052 |
|
research |
CEZ:AV0Z1075907 |
abstract
(eng) |
Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data, defocused images and on astronomical data. |
RIV |
BD |
department |
ZOI |
permalink |
http://hdl.handle.net/11104/0131204 |
ID_orig |
UTIA-B 20030104 |
arlyear |
2003 |
mrcbU63 |
cav_un_epca*0253235 IEEE Transactions on Image Processing 1057-7149 1941-0042 Roč. 12 č. 9 2003 1094 1106 Institute of Electrical and Electronics Engineers |
|