| bibtype |
C -
Conference Paper (international conference)
|
| ARLID |
0411141 |
| utime |
20240103182304.9 |
| mtime |
20060210235959.9 |
| title
(primary) (eng) |
Polynomial matrix fractions as models of linear systems: Theory and software tools |
| publisher |
| place |
Vienna |
| name |
TU Vienna |
| pub_time |
2003 |
|
| specification |
|
| serial |
| title
|
Proceedings of the MATHMOD 2003 Conference |
| page_num |
101-111 |
|
| keyword |
numerical algorithms |
| keyword |
polynomial methods |
| author
(primary) |
| ARLID |
cav_un_auth*0101110 |
| name1 |
Hromčík |
| name2 |
Martin |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0101111 |
| name1 |
Hurák |
| name2 |
Zdeněk |
| institution |
UTIA-B |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| author
|
| ARLID |
cav_un_auth*0021057 |
| name1 |
Šebek |
| name2 |
M. |
| country |
CZ |
|
| COSATI |
09I |
| cas_special |
| project |
| project_id |
GA102/02/0709 |
| agency |
GA ČR |
| ARLID |
cav_un_auth*0004118 |
|
| research |
CEZ:AV0Z1075907 |
| abstract
(eng) |
In spite of the fact that transfer functions as ratios of two polynomials are generally considered a useful and natural description of linear time invariant systems in the single-input-single-output constellation (SISO),many authors ignore their multivariable (MIMO)counterpart -the polynomial matrix fractions (PMF). Instead, they often rely on the state-space theory completely in that case. We show that it is often convenient to utilize polynomial matrix fractions for modeling linear MIMO systems. |
| action |
| ARLID |
cav_un_auth*0213071 |
| name |
MATHMOD Conference /3./ |
| place |
Vienna |
| country |
AT |
| dates |
05.02.2003-07.02.2003 |
|
| RIV |
BC |
| department |
TŘ |
| permalink |
http://hdl.handle.net/11104/0131228 |
| ID_orig |
UTIA-B 20030128 |
| arlyear |
2003 |
| mrcbU10 |
2003 |
| mrcbU10 |
Vienna TU Vienna |
| mrcbU63 |
Proceedings of the MATHMOD 2003 Conference 101 111 |
|