bibtype J - Journal Article
ARLID 0411244
utime 20240103182312.5
mtime 20060210235959.9
title (primary) (eng) A new class of metric divergences on probability spaces and its applicability in statistics
specification
page_count 15 s.
serial
ARLID cav_un_epca*0250791
ISSN 0020-3157
title Annals of the Institute of Statistical Mathematics
volume_id 55
volume 3 (2003)
page_num 639-653
keyword dissimilarities
keyword metric divergences
keyword minimum distance estimators
author (primary)
ARLID cav_un_auth*0101218
name1 Vajda
name2 Igor
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213136
name1 Öesterreicher
name2 F.
country AT
COSATI 12A
cas_special
project
project_id 579
agency Commission EU
country XE
research CEZ:AV0Z1075907
abstract (eng) The paper introduces an infinite class of f-divergences of probability distributions which metrize spaces of probability distributions. The total variation, Hellinger divergence and information radius of Sibson are examples of divergences from this class. The remaining divergences seem to be new in the literature on this topic. An important applicability of these divergences in the statistical point estimation is demonstrated.
RIV BB
department SI
permalink http://hdl.handle.net/11104/0131329
ID_orig UTIA-B 20030231
arlyear 2003
mrcbU63 cav_un_epca*0250791 Annals of the Institute of Statistical Mathematics 0020-3157 1572-9052 Roč. 55 č. 3 2003 639 653