bibtype J - Journal Article
ARLID 0411265
utime 20240903170412.2
mtime 20060210235959.9
title (primary) (eng) Strictly modular probabilistic neural networks for pattern recognition
specification
page_count 17 s.
serial
ARLID cav_un_epca*0290321
ISSN 1210-0552
title Neural Network World
volume_id 13
volume 6 (2003)
page_num 599-615
publisher
name Ústav informatiky AV ČR, v. v. i.
keyword neural networks
keyword distribution mixtures
keyword pattern recognition
author (primary)
ARLID cav_un_auth*0101091
name1 Grim
name2 Jiří
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213065
name1 Just
name2 P.
country CZ
author
ARLID cav_un_auth*0101182
name1 Pudil
name2 Pavel
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 09K
COSATI 12B
COSATI 06D
cas_special
project
project_id GA402/01/0981
agency GA ČR
ARLID cav_un_auth*0008962
research CEZ:AV0Z1075907
abstract (eng) Considering the statistical pattern recognition we approximate the unknown class-conditional probability distributions by multivariate Bernoulli mixtures. We show that both the parameter optimization based on EM algorithm and the resulting Bayesian decision-making can be realized by a strictly modular probabilistic neural network. The autonomous adaptation of neurons includes only the locally available information. The properties of the sequential learning procedure are illustrated by numerical examples.
RIV BB
department RO
permalink http://hdl.handle.net/11104/0003519
ID_orig UTIA-B 20030252
arlyear 2003
mrcbU63 cav_un_epca*0290321 Neural Network World 1210-0552 Roč. 13 č. 6 2003 599 615 Ústav informatiky AV ČR, v. v. i.