bibtype |
J -
Journal Article
|
ARLID |
0411318 |
utime |
20240103182318.1 |
mtime |
20060210235959.9 |
title
(primary) (eng) |
Maximum principle in optimal design of plates with stratified thickness |
specification |
|
serial |
ARLID |
cav_un_epca*0256161 |
ISSN |
0095-4616 |
title
|
Applied Mathematics and Optimization |
volume_id |
51 |
volume |
99 (2005) |
page_num |
183-200 |
publisher |
|
|
title
(cze) |
Princip maxima v optimálním návrhu desek s laminátové uspořádanou tloušťkou |
keyword |
linear plate equation |
keyword |
homogenization |
keyword |
optimal thickness design |
author
(primary) |
ARLID |
cav_un_auth*0101187 |
name1 |
Roubíček |
name2 |
Tomáš |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
COSATI |
12A |
cas_special |
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
An optimal design problem for a plate governed by a linear, elliptic equation with bounded thickness varying only in a single prescribed direction and with unilateral isoperimetrical-type constraints is considered. Using Murat-Tartar's homogenization theory for stratified plates and Young-measure relaxation theory, smoothness of the extended cost and constraint functionals is proved, and then the maximum principle necessary for an optimal relaxed design is derived. |
abstract
(cze) |
V práci se odvozuje princip maxima v optimálním návrhu desek s laminátově uspořádanou tloušťkou. |
RIV |
BA |
reportyear |
2006 |
department |
MTR |
permalink |
http://hdl.handle.net/11104/0131401 |
ID_orig |
UTIA-B 20050047 |
arlyear |
2005 |
mrcbU63 |
cav_un_epca*0256161 Applied Mathematics and Optimization 0095-4616 1432-0606 Roč. 51 č. 99 2005 183 200 Springer |
|