bibtype J - Journal Article
ARLID 0411318
utime 20240103182318.1
mtime 20060210235959.9
title (primary) (eng) Maximum principle in optimal design of plates with stratified thickness
specification
page_count 18 s.
serial
ARLID cav_un_epca*0256161
ISSN 0095-4616
title Applied Mathematics and Optimization
volume_id 51
volume 99 (2005)
page_num 183-200
publisher
name Springer
title (cze) Princip maxima v optimálním návrhu desek s laminátové uspořádanou tloušťkou
keyword linear plate equation
keyword homogenization
keyword optimal thickness design
author (primary)
ARLID cav_un_auth*0101187
name1 Roubíček
name2 Tomáš
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
COSATI 12A
cas_special
research CEZ:AV0Z10750506
abstract (eng) An optimal design problem for a plate governed by a linear, elliptic equation with bounded thickness varying only in a single prescribed direction and with unilateral isoperimetrical-type constraints is considered. Using Murat-Tartar's homogenization theory for stratified plates and Young-measure relaxation theory, smoothness of the extended cost and constraint functionals is proved, and then the maximum principle necessary for an optimal relaxed design is derived.
abstract (cze) V práci se odvozuje princip maxima v optimálním návrhu desek s laminátově uspořádanou tloušťkou.
RIV BA
reportyear 2006
department MTR
permalink http://hdl.handle.net/11104/0131401
ID_orig UTIA-B 20050047
arlyear 2005
mrcbU63 cav_un_epca*0256161 Applied Mathematics and Optimization 0095-4616 1432-0606 Roč. 51 č. 99 2005 183 200 Springer