project |
project_id |
IAA1075104 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0001799 |
|
project |
project_id |
GA201/04/0393 |
agency |
GA ČR |
ARLID |
cav_un_auth*0001808 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
Given a random vector, the collection of Shannon entropies of its subvectors gives rise to an entropy function that can be considered for a polymatroid. The entropy functions admit special pasting which translates to a notion of adhesivity of polymatroids. The classes of polymatroids that have adhesive restrictions or copies are shown to contain the entropy functions. Information inequalities and their applications are discussed as consequences of this containment. |
abstract
(cze) |
Pro daný náhodný vektor je kolekce Shannonových entropií všech jeho podvektorů chápána jako entropická funkce, a posléze jako polymatroid. Entropické funkce jest možno vzájemně lepit speciálním způsobem, což motivuje nový pojem adhesivity polymatroidů. Třídy polymatroidů s adhesivními restrikcemi a samoadhesivní vlastností obsahují entropické funkce. Informačně teoretické nerovnosti jsou odvozeny z těchto inkluzí. |
action |
ARLID |
cav_un_auth*0213218 |
name |
Canadian Workshop on Information Theory /9./ |
place |
Montreal |
country |
CA |
dates |
05.06.2005-08.06.2005 |
|
RIV |
BD |
reportyear |
2006 |
department |
MTR |
permalink |
http://hdl.handle.net/11104/0131453 |
ID_orig |
UTIA-B 20050101 |
arlyear |
2005 |
mrcbU10 |
2005 |
mrcbU10 |
Montreal McGill University |
mrcbU63 |
Proceedings of the Ninth Canadian Workshop on Information Theory 28 31 |