bibtype I - Internal Report
ARLID 0411390
utime 20240103182323.9
mtime 20060210235959.9
title (primary) (eng) Efficient Variant of Algorithm FastICA for Independent Component Analysis Attaining the Cramér-Rao Lower Bound
publisher
place Praha
name ÚTIA AV ČR
pub_time 2005
specification
page_count 27 s.
edition
part_name Interní publikace DAR - ÚTIA.
volume_id 2005/10
keyword independent component analysis
keyword blind source separation
keyword blind deconvolution
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0213223
name1 Oja
name2 E.
country FI
COSATI 12B
cas_special
project
project_id 1M0572
agency GA MŠk
ARLID cav_un_auth*0001814
research CEZ:AV0Z10750506
abstract (eng) FastICA is one of the most popular algorithms for Independent Component Analysis, demixing a set of statistically independent sources that have been mixed linearly. A key question is how accurate the method is for finite data samples. We propose an improved version of the FastICA algorithm which is asymptotically efficient. i.e. its accuracy given by the residual error variance attains the Cramér-Rao lower bound. The error is thus as small as possible.
abstract (cze) V práci je navržena nová varianta algoritmu FastICA, která je asymptoticky eficientní, tj. její přesnost se blíží Rao-Cramerově hranici, za předpokladu že pravděpodobnostní rozložení separovaných signálů je z třídy zobecněných Gaussovských distribucí. V simulacích je navržená metoda porovnávána se známým algoritmem JADE a s neparametrickou ICA.
RIV BB
reportyear 2006
department SI
permalink http://hdl.handle.net/11104/0131472
ID_orig UTIA-B 20050120
arlyear 2005
mrcbU10 2005
mrcbU10 Praha ÚTIA AV ČR