bibtype J - Journal Article
ARLID 0421362
utime 20240103203459.0
mtime 20131218235959.9
WOS 000305134600001
SCOPUS 84856577766
DOI 10.1007/s00158-012-0762-z
title (primary) (eng) Solving stress constrained problems in topology and material optimization
specification
page_count 16 s.
media_type P
serial
ARLID cav_un_epca*0255735
ISSN 1615-147X
title Structural and Multidisciplinary Optimization
volume_id 46
volume 1 (2012)
page_num 1-15
keyword Topology optimization
keyword Material Optimization
keyword Stress based design
keyword Nonlinear semidefinite programming
author (primary)
ARLID cav_un_auth*0101131
name1 Kočvara
name2 Michal
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021060
name1 Stingl
name2 M.
country DE
source
url http://library.utia.cas.cz/separaty/2013/MTR/kocvara-0421362.pdf
cas_special
project
project_id IAA100750802
agency GA AV ČR
ARLID cav_un_auth*0241214
project
project_id 30717
agency EU FP6
country XE
ARLID cav_un_auth*0301778
research CEZ:AV0Z10750506
abstract (eng) This article is a continuation of the paper /citet{kocvara-stingl-stress}. The aim is to describe numerical techniques for the solution of topology and material optimization problems with local stress constraints. In particular, we consider the topology optimization (variable thickness sheet or ``free sizing'') and the free material optimization problems. We will present an efficient algorithm for solving large scale instances of these problems. Examples will demonstrate the efficiency of the algorithm and the importance of the local stress constraints. In particular, we will argue that in certain topology optimization problems, the addition of stress constraints must necessarily lead not only to the change of optimal topology but also optimal geometry. Contrary to that, in material optimization problems the stress singularity is treated by the change in the optimal material properties.
reportyear 2014
RIV BA
num_of_auth 2
mrcbC52 4 A 4a 20231122135956.4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0227925
cooperation
ARLID cav_un_auth*0297782
name University of Erlangen
country DE
mrcbT16-e COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|ENGINEERINGMULTIDISCIPLINARY|MECHANICS
mrcbT16-f 1.765
mrcbT16-g 0.137
mrcbT16-h 6
mrcbT16-i 0.00727
mrcbT16-j 0.681
mrcbT16-k 2186
mrcbT16-l 131
mrcbT16-s 1.389
mrcbT16-4 Q1
mrcbT16-B 60.427
mrcbT16-C 78.364
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2012
mrcbTft \nSoubory v repozitáři: kocvara-0421362.pdf
mrcbU14 84856577766 SCOPUS
mrcbU34 000305134600001 WOS
mrcbU63 cav_un_epca*0255735 Structural and Multidisciplinary Optimization 1615-147X 1615-1488 Roč. 46 č. 1 2012 1 15