bibtype |
J -
Journal Article
|
ARLID |
0421362 |
utime |
20240103203459.0 |
mtime |
20131218235959.9 |
WOS |
000305134600001 |
SCOPUS |
84856577766 |
DOI |
10.1007/s00158-012-0762-z |
title
(primary) (eng) |
Solving stress constrained problems in topology and material optimization |
specification |
page_count |
16 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0255735 |
ISSN |
1615-147X |
title
|
Structural and Multidisciplinary Optimization |
volume_id |
46 |
volume |
1 (2012) |
page_num |
1-15 |
|
keyword |
Topology optimization |
keyword |
Material Optimization |
keyword |
Stress based design |
keyword |
Nonlinear semidefinite programming |
author
(primary) |
ARLID |
cav_un_auth*0101131 |
name1 |
Kočvara |
name2 |
Michal |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0021060 |
name1 |
Stingl |
name2 |
M. |
country |
DE |
|
source |
|
cas_special |
project |
project_id |
IAA100750802 |
agency |
GA AV ČR |
ARLID |
cav_un_auth*0241214 |
|
project |
project_id |
30717 |
agency |
EU FP6 |
country |
XE |
ARLID |
cav_un_auth*0301778 |
|
research |
CEZ:AV0Z10750506 |
abstract
(eng) |
This article is a continuation of the paper /citet{kocvara-stingl-stress}. The aim is to describe numerical techniques for the solution of topology and material optimization problems with local stress constraints. In particular, we consider the topology optimization (variable thickness sheet or ``free sizing'') and the free material optimization problems. We will present an efficient algorithm for solving large scale instances of these problems. Examples will demonstrate the efficiency of the algorithm and the importance of the local stress constraints. In particular, we will argue that in certain topology optimization problems, the addition of stress constraints must necessarily lead not only to the change of optimal topology but also optimal geometry. Contrary to that, in material optimization problems the stress singularity is treated by the change in the optimal material properties. |
reportyear |
2014 |
RIV |
BA |
num_of_auth |
2 |
mrcbC52 |
4 A 4a 20231122135956.4 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0227925 |
cooperation |
ARLID |
cav_un_auth*0297782 |
name |
University of Erlangen |
country |
DE |
|
mrcbT16-e |
COMPUTERSCIENCEINTERDISCIPLINARYAPPLICATIONS|ENGINEERINGMULTIDISCIPLINARY|MECHANICS |
mrcbT16-f |
1.765 |
mrcbT16-g |
0.137 |
mrcbT16-h |
6 |
mrcbT16-i |
0.00727 |
mrcbT16-j |
0.681 |
mrcbT16-k |
2186 |
mrcbT16-l |
131 |
mrcbT16-s |
1.389 |
mrcbT16-4 |
Q1 |
mrcbT16-B |
60.427 |
mrcbT16-C |
78.364 |
mrcbT16-D |
Q2 |
mrcbT16-E |
Q1 |
arlyear |
2012 |
mrcbTft |
\nSoubory v repozitáři: kocvara-0421362.pdf |
mrcbU14 |
84856577766 SCOPUS |
mrcbU34 |
000305134600001 WOS |
mrcbU63 |
cav_un_epca*0255735 Structural and Multidisciplinary Optimization 1615-147X 1615-1488 Roč. 46 č. 1 2012 1 15 |
|