bibtype A - Abstract
ARLID 0423186
utime 20240103203700.5
mtime 20140207235959.9
title (primary) (eng) Fast algorithms for Bayesian JPEG decompression
specification
page_count 1 s.
serial
ARLID cav_un_epca*0424930
title Proceedings of the 3rd SPLab Workshop 2013
publisher
place Brno
name Signal Processing Laboratory
year 2013
keyword JPEG decompression
keyword image restoration
keyword image processing
author (primary)
ARLID cav_un_auth*0108377
name1 Šorel
name2 Michal
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
abstract (eng) JPEG decompression can be formulated as a probabilistic problem and solved in the standard way using the Bayesian approach. The choice of image prior probability distribution influences complexity of the corresponding minimization problem. In this talk we show how a convenient form of this prior allows for efficient solution by a primal-dual method.
action
ARLID cav_un_auth*0299361
name 3rd SPLab Workshop 2013
place Brno
dates 2013
country CZ
reportyear 2014
RIV JD
presentation_type ZP
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0230916
confidential S
arlyear 2013
mrcbU63 cav_un_epca*0424930 Proceedings of the 3rd SPLab Workshop 2013 Brno Signal Processing Laboratory 2013