bibtype J - Journal Article
ARLID 0423196
utime 20240903204256.1
mtime 20140226235959.9
title (primary) (eng) Black-Box Optimization for Buildings and Its Enhancement by Advanced Communication Infrastructure
specification
page_count 12 s.
serial
ARLID cav_un_epca*0423195
ISSN 2255-2863
title Advances in Distributed Computing and Artificial Intelligence Journal
volume_id 1
volume 5 (2013)
page_num 53-64
keyword Evolutionary algorithms
keyword Black box modeling
keyword Simplification
keyword Refining
keyword HVAC
keyword Load shedding
keyword Communication infrastructure
author (primary)
ARLID cav_un_auth*0292010
name1 Macek
name2 Karel
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0292027
name1 Rojíček
name2 J.
country CZ
author
ARLID cav_un_auth*0301156
name1 Kontes
name2 G.
country GR
author
ARLID cav_un_auth*0301157
name1 Rovas
name2 D. V.
country GR
source
url http://library.utia.cas.cz/separaty/2014/AS/macek-0423196.pdf
cas_special
project
project_id GA13-13502S
agency GA ČR
ARLID cav_un_auth*0292725
abstract (eng) The solution of repeated fixed-horizon trajectory optimization problems of processes that are either too difficult or too complex to be described by physicsbased models can pose formidable challenges. Very often, soft-computing methods - e.g. black-box modeling and evolutionary optimization - are used. These approaches are ineffective or even computationally intractable for searching high-dimensional parameter spaces. In this paper, a structured iterative process is described for addressing such problems: the starting point is a simple parameterization of the trajectory starting with a reduced number of parameters; after selection of values for these parameters so that this simpler problem is covered satisfactorily, a refinement procedure increases the number of parameters and the optimization is repeated. This continuous parameter refinement and optimization process can yield effective solutions after only a few iterations.
reportyear 2014
RIV BC
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0231499
cooperation
ARLID cav_un_auth*0299369
name Honeywell Prague Laboratory
country CZ
confidential S
arlyear 2013
mrcbU63 cav_un_epca*0423195 Advances in Distributed Computing and Artificial Intelligence Journal 2255-2863 2255-2863 Roč. 1 č. 5 2013 53 64