bibtype J - Journal Article
ARLID 0424112
utime 20240103203801.1
mtime 20140129235959.9
SCOPUS 84887029914
WOS 000326120300001
DOI 10.1109/LSP.2013.2285932
title (primary) (eng) A Two-Stage MMSE Beamformer for Underdetermined Signal Separation
specification
page_count 4 s.
media_type P
serial
ARLID cav_un_epca*0253212
ISSN 1070-9908
title IEEE Signal Processing Letters
volume_id 20
volume 12 (2013)
page_num 1227-1230
publisher
name Institute of Electrical and Electronics Engineers
keyword beamforming
keyword underdetermined mixtures
keyword blind source separation
author (primary)
ARLID cav_un_auth*0108100
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
full_dept Department of Stochastic Informatics
name1 Koldovský
name2 Zbyněk
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
name1 Tichavský
name2 Petr
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274170
name1 Phan
name2 A. H.
country JP
author
ARLID cav_un_auth*0274171
name1 Cichocki
name2 A.
country JP
source
url http://library.utia.cas.cz/separaty/2014/SI/koldovsky-0424112.pdf
cas_special
project
ARLID cav_un_auth*0301478
project_id GAP103/11/1947
agency GA ČR
country CZ
abstract (eng) Blind separation of underdetermined instantaneous mixtures is a popular solution to inverse problems encountered in audio or biomedical applications where the number of sources exceeds the number of sensors. There are two non-equivalent tasks: to identify the mixing matrix and to separate the original sources. In this paper, we focus on the latter task by proposing a novel beamformer that minimizes the theoretical mean square error distance between the separated and original signals. The beamformer has two stages: one for the estimation of signals and one for their refinement. Within the former stage, the signals are assumed to be random and locally stationary, while the latter stage is based on a semi-deterministic model. The experiments prove superior performance of the proposed method compared to conventional MMSE beamforming.
RIV BB
reportyear 2014
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0230619
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-f 1.718
mrcbT16-g 0.264
mrcbT16-h 6.IV
mrcbT16-i 0.01450
mrcbT16-j 0.797
mrcbT16-k 4223
mrcbT16-l 295
mrcbT16-s 0.785
mrcbT16-z ScienceCitationIndexExpanded
mrcbT16-4 Q1
mrcbT16-B 66.128
mrcbT16-C 64.718
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2013
mrcbU14 84887029914 SCOPUS
mrcbU34 000326120300001 WOS
mrcbU63 cav_un_epca*0253212 IEEE Signal Processing Letters 1070-9908 1558-2361 Roč. 20 č. 12 2013 1227 1230 Institute of Electrical and Electronics Engineers