bibtype J - Journal Article
ARLID 0425341
utime 20240111140844.7
mtime 20150316235959.9
SCOPUS 84893267324
WOS 000332525000056
DOI 10.1016/j.amc.2013.12.186
title (primary) (eng) A TFETI domain decomposition solver for elastoplastic problems
specification
page_count 20 s.
media_type E
serial
ARLID cav_un_epca*0256160
ISSN 0096-3003
title Applied Mathematics and Computation
volume_id 231
volume 1 (2014)
page_num 634-653
publisher
name Elsevier
keyword elastoplasticity
keyword Total FETI domain decomposition method
keyword Finite element method
keyword Semismooth Newton method
author (primary)
ARLID cav_un_auth*0062211
name1 Čermák
name2 M.
country CZ
author
ARLID cav_un_auth*0084242
name1 Kozubek
name2 T.
country CZ
author
ARLID cav_un_auth*0221817
full_dept (cz) Oddělení aplikované matematiky a informatiky & Oddělení IT4Innovations
full_dept Department of applied mathematics and computer science and Department IT4Innovations
full_dept Applied Mathematics and Computer Science & IT4Innovations
name1 Sysala
name2 Stanislav
institution UGN-S
fullinstit Ústav geoniky AV ČR, v. v. i.
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type textový soubor
url http://ac.els-cdn.com/S0096300314000253/1-s2.0-S0096300314000253-main.pdf?_tid=33a29cf4-996a-11e3-8c5a-00000aacb360&acdnat=1392816896_4584697dc26cf934dcf590c63f0dbab7
cas_special
abstract (eng) We propose an algorithm for the efficient parallel implementation of elastoplastic problems with hardening based on the so-called TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. We consider an associated elastoplastic model with the von Mises plastic criterion and the linear isotropic hardening law. Such a model is discretized by the implicit Euler method in time and the consequent one time step elastoplastic problem by the finite element method in space. The latter results in a system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI domain decomposition method. The proposed TFETI based algorithm was implemented in Matlab parallel environment and its performance was illustrated on a 3D elastoplastic benchmark. Numerical results for different time discretizations and mesh levels are presented and discussed and a local quadratic convergence of the semismooth Newton method is observed.
RIV BA
reportyear 2015
num_of_auth 4
mrcbC52 4 A 4a 20231122140116.3
inst_support RVO:68145535
permalink http://hdl.handle.net/11104/0232566
cooperation
ARLID cav_un_auth*0295947
name Vysoká škola báňská - Technická univerzita Ostrava
institution VŠB
country CZ
confidential S
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.469
mrcbT16-s 0.961
mrcbT16-4 Q2
mrcbT16-B 31.217
mrcbT16-C 86.576
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2014
mrcbTft \nSoubory v repozitáři: valdman-0427638.pdf
mrcbU14 84893267324 SCOPUS
mrcbU34 000332525000056 WOS
mrcbU56 textový soubor
mrcbU63 cav_un_epca*0256160 Applied Mathematics and Computation 0096-3003 1873-5649 Roč. 231 č. 1 2014 634 653 Elsevier