bibtype J - Journal Article
ARLID 0425539
utime 20240103203939.7
mtime 20140226235959.9
WOS 000342540700007
SCOPUS 84894058260
DOI 10.1016/j.ins.2014.01.048
title (primary) (eng) Approximate Bayesian recursive estimation
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 285
volume 1 (2014)
page_num 100-111
publisher
name Elsevier
keyword Approximate parameter estimation
keyword Bayesian recursive estimation
keyword Kullback–Leibler divergence
keyword Forgetting
author (primary)
ARLID cav_un_auth*0101124
name1 Kárný
name2 Miroslav
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
institution UTIA-B
full_dept Department of Adaptive Systems
share 100
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf
cas_special
project
project_id GA13-13502S
agency GA ČR
ARLID cav_un_auth*0292725
abstract (eng) Bayesian learning provides a firm theoretical basis of the design and exploitation of algorithms in data-streams processing (preprocessing, change detection, hypothesis testing, clustering, etc.). Primarily, it relies on a recursive parameter estimation of a firmly bounded complexity. As a rule, it has to approximate the exact posterior probability density (pd), which comprises unreduced information about the estimated parameter. In the recursive treatment of the data stream, the latest approximate pd is usually updated using the treated parametric model and the newest data and then approximated. The fact that approximation errors may accumulate over time course is mostly neglected in the estimator design and, at most, checked ex post. The paper inspects the estimator design with respect to the error accumulation and concludes that a sort of forgetting (pd flattening) is an indispensable part of a reliable approximate recursive estimation.
reportyear 2015
RIV BB
num_of_auth 1
mrcbC52 4 A 4a 20231122140119.7
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0231504
confidential S
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 0.873
mrcbT16-s 2.226
mrcbT16-4 Q1
mrcbT16-B 74.327
mrcbT16-C 96.043
mrcbT16-D Q2
mrcbT16-E Q1*
arlyear 2014
mrcbTft \nSoubory v repozitáři: karny-0425539.pdf
mrcbU14 84894058260 SCOPUS
mrcbU34 000342540700007 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 285 č. 1 2014 100 111 Elsevier