bibtype J - Journal Article
ARLID 0427002
utime 20240103204108.8
mtime 20140618235959.9
WOS 000334087400009
DOI 10.1016/j.ijar.2013.09.016
title (primary) (eng) Learning Bayesian network structure: towards the essential graph by integer linear programming tools
specification
page_count 29 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 55
volume 4 (2014)
page_num 1043-1071
publisher
name Elsevier
keyword learning Bayesian network structure
keyword integer linear programming
keyword characteristic imset
keyword essential graph
author (primary)
ARLID cav_un_auth*0101202
name1 Studený
name2 Milan
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0274176
name1 Haws
name2 D.
country US
source
url http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf
cas_special
project
project_id GA13-20012S
agency GA ČR
ARLID cav_un_auth*0292670
abstract (eng) The basic idea of the geometric approach to learning a Bayesian network (BN) structure is to represent every BN structure by a certain vector. If the vector representative is chosen properly, it allows one to re-formulate the task of finding the global maximum of a score over BN structures as an integer linear programming (ILP) problem. Such a suitable zero-one vector representative is the characteristic imset, introduced by Studený, Hemmecke and Lindner in 2010, in the proceedings of the 5th PGM workshop. In this paper, extensions of characteristic imsets are considered which additionally encode chain graphs without flags equivalent to acyclic directed graphs. The main contribution is a polyhedral description of the respective domain of the ILP problem, that is, by means of a set of linear inequalities.
reportyear 2015
RIV BA
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0233079
confidential S
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.683
mrcbT16-s 1.460
mrcbT16-4 Q1
mrcbT16-B 58.39
mrcbT16-C 81.707
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2014
mrcbU34 000334087400009 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 55 č. 4 2014 1043 1071 Elsevier