bibtype J - Journal Article
ARLID 0427059
utime 20240103204112.8
mtime 20140618235959.9
WOS 000334087400010
DOI 10.1016/j.ijar.2013.12.002
title (primary) (eng) Probabilistic inference with noisy-threshold models based on a CP tensor decomposition
specification
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0256774
ISSN 0888-613X
title International Journal of Approximate Reasoning
volume_id 55
volume 4 (2014)
page_num 1072-1092
publisher
name Elsevier
keyword Bayesian networks
keyword Probabilistic inference
keyword Candecomp-Parafac tensor decomposition
keyword Symmetric tensor rank
author (primary)
ARLID cav_un_auth*0101228
name1 Vomlel
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/MTR/vomlel-0427059.pdf
cas_special
project
project_id GA13-20012S
agency GA ČR
ARLID cav_un_auth*0292670
project
project_id GA102/09/1278
agency GA ČR
ARLID cav_un_auth*0253174
abstract (eng) The specification of conditional probability tables (CPTs) is a difficult task in the construction of probabilistic graphical models. Several types of canonical models have been proposed to ease that difficulty. Noisy-threshold models generalize the two most popular canonical models: the noisy-or and the noisy-and. When using the standard inference techniques the inference complexity is exponential with respect to the number of parents of a variable. More efficient inference techniques can be employed for CPTs that take a special form. CPTs can be viewed as tensors. Tensors can be decomposed into linear combinations of rank-one tensors, where a rank-one tensor is an outer product of vectors. Such decomposition is referred to as Canonical Polyadic (CP) or CANDECOMP-PARAFAC (CP) decomposition. The tensor decomposition offers a compact representation of CPTs which can be efficiently utilized in probabilistic inference.
reportyear 2015
RIV JD
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0233078
confidential S
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.683
mrcbT16-s 1.460
mrcbT16-4 Q1
mrcbT16-B 58.39
mrcbT16-C 81.707
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2014
mrcbU34 000334087400010 WOS
mrcbU63 cav_un_epca*0256774 International Journal of Approximate Reasoning 0888-613X 1873-4731 Roč. 55 č. 4 2014 1072 1092 Elsevier