bibtype J - Journal Article
ARLID 0428536
utime 20240103204255.8
mtime 20140819235959.9
WOS 000337267200002
DOI 10.1016/j.dsp.2014.04.008
title (primary) (eng) Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform
specification
page_count 27 s.
media_type P
serial
ARLID cav_un_epca*0252719
ISSN 1051-2004
title Digital Signal Processing
volume_id 31
volume 1 (2014)
page_num 13-27
publisher
name Elsevier
keyword Zernike moments
keyword Undecimated discrete wavelet transform
keyword Decision fusion
keyword Near infrared
keyword Face recognition
author (primary)
ARLID cav_un_auth*0317051
name1 Farokhi
name2 Sajad
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0302104
name1 Shamsuddin
name2 S.M.
country MY
author
ARLID cav_un_auth*0302105
name1 Sheikh
name2 U.U.
country MY
author
ARLID cav_un_auth*0101087
name1 Flusser
name2 Jan
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
institution UTIA-B
full_dept Department of Image Processing
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0290073
name1 Khansari
name2 M.
country IR
author
ARLID cav_un_auth*0290074
name1 Jafari-Khouzani
name2 K.
country US
source
url http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0428536.pdf
cas_special
project
project_id GAP103/11/1552
agency GA ČR
ARLID cav_un_auth*0273618
abstract (eng) This study proposes a novel near infrared face recognition algorithm based on a combination of both local and global features. In this method local features are extracted from partitioned images by means of undecimated discrete wavelet transform (UDWT) and global features are extracted from the whole face image by means of Zernike moments (ZMs). Spectral regression discriminant analysis (SRDA) is then used to reduce the dimension of features. In order to make full use of global and local features and further improve the performance, a decision fusion technique is employed by using weighted sum rule. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that the proposed method has superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments. Moreover its computational time is acceptable for on-line face recognition systems.
reportyear 2015
RIV JD
num_of_auth 6
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0235481
cooperation
ARLID cav_un_auth*0303660
institution UTM
name Universiti Teknologi
country MY
confidential S
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC
mrcbT16-j 0.444
mrcbT16-s 0.509
mrcbT16-4 Q2
mrcbT16-B 43.137
mrcbT16-C 51.205
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2014
mrcbU34 000337267200002 WOS
mrcbU63 cav_un_epca*0252719 Digital Signal Processing 1051-2004 1095-4333 Roč. 31 č. 1 2014 13 27 Elsevier