bibtype J - Journal Article
ARLID 0428704
utime 20240103204307.6
mtime 20140609235959.9
SCOPUS 84937900561
WOS 000351311600018
DOI 10.1017/jsl.2014.19
title (primary) (eng) A Henkin-Style Proof of Completeness for First-Order Algebraizable Logics
specification
page_count 18 s.
serial
ARLID cav_un_epca*0257123
ISSN 0022-4812
title Journal of Symbolic Logic
volume_id 80
volume 1 (2015)
page_num 341-358
publisher
name Cambridge University Press
keyword abstract algebraic logics
keyword algebraizable logics
keyword first-order logics
keyword completeness theorem
keyword Henkin theories
author (primary)
ARLID cav_un_auth*0100737
name1 Cintula
name2 Petr
institution UIVT-O
full_dept (cz) Oddělení teoretické informatiky
full_dept (eng) Department of Theoretical Computer Science
full_dept Department of Theoretical Computer Science
fullinstit Ústav informatiky AV ČR, v. v. i.
author
ARLID cav_un_auth*0293476
name1 Noguera
name2 Carles
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
cas_special
project
project_id GA13-14654S
agency GA ČR
ARLID cav_un_auth*0292719
project
project_id 247584
agency EC
country XE
ARLID cav_un_auth*0323440
abstract (eng) This paper considers Henkin’s proof of completeness of classical first-order logic and extends its scope to the realm of algebraizable logics in the sense of Blok and Pigozzi. Given a propositional logic (for which we only need to assume that it has an algebraic semantics and a suitable disjunction) we axiomatize two natural first-order extensions and prove that one is complete with respect to all models over its algebras, while the other one is complete with respect to all models over relatively finitely subdirectly irreducible ones. While the first completeness result is relatively straightforward, the second requires non-trivial modifications of Henkin’s proof by making use of the disjunction connective. As a byproduct, we also obtain a form of Skolemization provided that the algebraic semantics admits regular completions. The relatively modest assumptions on the propositional side allow for a wide generalization of previous approaches by Rasiowa, Sikorski, Hájek, Horn, and others and help to illuminate the “essentially first-order” steps in the classical Henkin’s proof.
RIV BA
reportyear 2015
mrcbC52 4 O R hod 4o 4rh 20231122140250.4
inst_support RVO:67985807
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0234002
mrcbC64 1 Department of Theoretical Computer Science UIVT-O 10100 LOGIC
mrcbC64 1 Department of Decision Making Theory UTIA-B 10100 LOGIC
confidential S
mrcbC86 n.a. Article Mathematics|Logic
mrcbT16-e LOGIC|MATHEMATICS
mrcbT16-j 0.724
mrcbT16-s 1.203
mrcbT16-4 Q1
mrcbT16-B 62.403
mrcbT16-C 34.914
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2015
mrcbTft \nSoubory v repozitáři: 0428704.pdf, a0428704.pdf
mrcbU14 84937900561 SCOPUS
mrcbU34 000351311600018 WOS
mrcbU63 cav_un_epca*0257123 Journal of Symbolic Logic 0022-4812 1943-5886 Roč. 80 č. 1 2015 341 358 Cambridge University Press