bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0431132 |
utime |
20240111140850.1 |
mtime |
20140912235959.9 |
SCOPUS |
84919933899 |
WOS |
000359818002028 |
DOI |
10.1109/ICPR.2014.357 |
title
(primary) (eng) |
Effective Acquisition of Dense Anisotropic BRDF |
specification |
page_count |
6 s. |
media_type |
C |
|
serial |
ARLID |
cav_un_epca*0431131 |
ISBN |
978-1-4799-5208-3 |
ISSN |
1051-4651 |
title
|
Proceedings of the 22nd International Conference on Pattern Recognition (ICPR 2014) |
page_num |
2047-2052 |
publisher |
place |
Stockholm |
name |
IEEE Computer Society |
year |
2014 |
|
|
keyword |
BRDF |
keyword |
measurement |
keyword |
anisotropic |
keyword |
goniometer |
author
(primary) |
ARLID |
cav_un_auth*0101086 |
share |
50 |
name1 |
Filip |
name2 |
Jiří |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0282273 |
share |
40 |
name1 |
Vávra |
name2 |
Radomír |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0283206 |
share |
10 |
name1 |
Havlíček |
name2 |
Michal |
institution |
UTIA-B |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0303439 |
project_id |
GA14-10911S |
agency |
GA ČR |
country |
CZ |
|
project |
ARLID |
cav_un_auth*0303412 |
project_id |
GA14-02652S |
agency |
GA ČR |
country |
CZ |
|
project |
ARLID |
cav_un_auth*0273627 |
project_id |
GAP103/11/0335 |
agency |
GA ČR |
|
abstract
(eng) |
The development of novel analytical BRDF models, as well as adaptive BRDF sampling approaches, rely on the appropriate BRDF measurement of real materials. The quality of measurements is even more critical when it comes to accurately representing anisotropic materials where the character of anisotropy is unknown (locations of anisotropic highlights, their width, shape, etc.). As currently there is a lack of dense yet noise-free BRDF anisotropic datasets, we introduce such unique measurements of three anisotropic fabric materials. In this paper we discuss a method of dense BRDF data acquisition, post-processing, missing values interpolation, and analyze properties of the datasets. Our results are compared with photographs, dense data fitted and generated by two state-of-the art anisotropic BRDF models, and alternative measurements available. |
action |
ARLID |
cav_un_auth*0305624 |
name |
ICPR 2014 - The 22nd International Conference on Pattern Recognition |
dates |
24.08.2014-28.08.2014 |
place |
Stockholm |
country |
SE |
|
RIV |
BD |
FORD0 |
10000 |
FORD1 |
10200 |
FORD2 |
10201 |
reportyear |
2015 |
presentation_type |
PO |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0236069 |
confidential |
S |
mrcbC83 |
RIV/67985556:_____/14:00431132!RIV15-AV0-67985556 152459699 Doplnění UT WOS a Scopus |
mrcbC83 |
RIV/67985556:_____/14:00431132!RIV15-GA0-67985556 152500651 Doplnění UT WOS a Scopus |
mrcbC86 |
n.a. Proceedings Paper Computer Science Artificial Intelligence|Computer Science Theory Methods|Engineering Electrical Electronic |
mrcbT16-q |
50 |
mrcbT16-s |
0.293 |
mrcbT16-y |
11.42 |
mrcbT16-x |
0.77 |
mrcbT16-E |
Q3 |
arlyear |
2014 |
mrcbU14 |
84919933899 SCOPUS |
mrcbU34 |
000359818002028 WOS |
mrcbU56 |
hypertextový soubor PDF 3MB |
mrcbU63 |
cav_un_epca*0431131 Proceedings of the 22nd International Conference on Pattern Recognition (ICPR 2014) 978-1-4799-5208-3 1051-4651 2047 2052 Stockholm IEEE Computer Society 2014 |
|