bibtype J - Journal Article
ARLID 0431296
utime 20240103204556.1
mtime 20140912235959.9
WOS 000341424500003
SCOPUS 84906727319
DOI 10.1007/s11228-014-0278-3
title (primary) (eng) On Stability of M-stationary Points in MPCCs
specification
page_count 21 s.
media_type P
serial
ARLID cav_un_epca*0343967
ISSN 1877-0533
title Set-Valued and Variational Analysis
volume_id 22
volume 3 (2014)
page_num 575-595
publisher
name Springer
keyword Parameterized mathematical programs with complementarity constraints
keyword M-stationarity
keyword Sensitivity analysis
keyword Isolated calmness
keyword Aubin property
author (primary)
ARLID cav_un_auth*0220207
name1 Červinka
name2 Michal
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101173
name1 Outrata
name2 Jiří
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0234872
name1 Pištěk
name2 Miroslav
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/MTR/cervinka-0431296.pdf
cas_special
project
project_id DP110102011
agency Australian Research Council
country AU
ARLID cav_un_auth*0305754
project
project_id GAP102/11/0437
agency GA ČR
country CZ
ARLID cav_un_auth*0273082
project
project_id GAP402/12/1309
agency GA ČR
ARLID cav_un_auth*0284931
abstract (eng) We consider parameterized Mathematical Programs with Complementarity Constraints arising, e.g., in modeling of deregulated electricity markets. Using the standard rules of the generalized differential calculus we analyze qualitative stability of solutions to the respective M-stationarity conditions. In particular, we provide characterizations and criteria for the isolated calmness and the Aubin properties of the stationarity map. To this end, we introduce the second-order limiting coderivative of mappings and provide formulas for this notion and for the graphical derivative of the limiting coderivative in the case of the normal cone mapping to Rn+.
reportyear 2015
RIV BA
num_of_auth 3
mrcbC52 4 A 4a 20231122140411.8
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0236079
confidential S
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 1.116
mrcbT16-s 1.409
mrcbT16-4 Q1
mrcbT16-B 85.826
mrcbT16-C 81.128
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2014
mrcbTft \nSoubory v repozitáři: cervinka-0431296.pdf
mrcbU14 84906727319 SCOPUS
mrcbU34 000341424500003 WOS
mrcbU63 cav_un_epca*0343967 Set-Valued and Variational Analysis 1877-0533 1877-0541 Roč. 22 č. 3 2014 575 595 Springer