bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0431896 |
utime |
20240111140851.3 |
mtime |
20141023235959.9 |
SCOPUS |
84921527707 |
WOS |
000358253800035 |
DOI |
10.1007/978-3-319-11433-0_35 |
title
(primary) (eng) |
An Approximate Tensor-Based Inference Method Applied to the Game of Minesweeper |
specification |
page_count |
16 s. |
media_type |
E |
|
serial |
ARLID |
cav_un_epca*0431895 |
ISBN |
978-3-319-11432-3 |
title
|
Probabilistic Graphical Models |
part_title |
8745 |
page_num |
535-550 |
publisher |
place |
Cham Heidelberg NewYork Dordrecht London |
name |
Springer International Publishing |
year |
2014 |
|
editor |
name1 |
van der Gaag |
name2 |
Linda C. |
|
editor |
name1 |
Feelders |
name2 |
Ad J. |
|
|
keyword |
Bayesian Networks |
keyword |
Probabilistic Inference |
keyword |
CP Tensor Decomposition |
keyword |
Symmetric Tensor Rank |
author
(primary) |
ARLID |
cav_un_auth*0101228 |
share |
50 |
name1 |
Vomlel |
name2 |
Jiří |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
full_dept |
Department of Decision Making Theory |
country |
CZ |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101212 |
share |
50 |
name1 |
Tichavský |
name2 |
Petr |
institution |
UTIA-B |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0292670 |
project_id |
GA13-20012S |
agency |
GA ČR |
|
project |
ARLID |
cav_un_auth*0303443 |
project_id |
GA14-13713S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
We propose an approximate probabilistic inference method based on the CP-tensor decomposition and apply it to the well known computer game of Minesweeper. In the method we view conditional probability tables of the exactly l-out-of-k functions as tensors and approximate them by a sum of rank-one tensors. The number of the summands is min{l+1,k-l+1}, which is lower than their exact symmetric tensor rank, which is k. Accuracy of the approximation can be tuned by single scalar parameter. The computer game serves as a prototype for applications of inference mechanisms in Bayesian networks, which are not always tractable due to the dimensionality of the problem, but the tensor decomposition may significantly help. |
action |
ARLID |
cav_un_auth*0306406 |
name |
7th European Workshop, PGM 2014, |
dates |
17.09.2014-19.09.2014 |
place |
Utrecht |
country |
NL |
|
RIV |
IN |
FORD0 |
10000 |
FORD1 |
10200 |
FORD2 |
10201 |
reportyear |
2015 |
num_of_auth |
2 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0237777 |
confidential |
S |
mrcbC83 |
RIV/67985556:_____/14:00431896!RIV15-AV0-67985556 152460049 Doplnění UT WOS a Scopus |
mrcbC83 |
RIV/67985556:_____/14:00431896!RIV15-GA0-67985556 152501092 Doplnění UT WOS a Scopus |
arlyear |
2014 |
mrcbU14 |
84921527707 SCOPUS |
mrcbU34 |
000358253800035 WOS |
mrcbU56 |
PDF soubor 431 kB |
mrcbU63 |
cav_un_epca*0431895 Probabilistic Graphical Models 978-3-319-11432-3 535 550 Cham Heidelberg NewYork Dordrecht London Springer International Publishing 2014 Lecture Notes in Computer Science 8745 |
mrcbU67 |
van der Gaag Linda C. 340 |
mrcbU67 |
Feelders Ad J. 340 |
|