bibtype C - Conference Paper (international conference)
ARLID 0431896
utime 20240111140851.3
mtime 20141023235959.9
SCOPUS 84921527707
WOS 000358253800035
DOI 10.1007/978-3-319-11433-0_35
title (primary) (eng) An Approximate Tensor-Based Inference Method Applied to the Game of Minesweeper
specification
page_count 16 s.
media_type E
serial
ARLID cav_un_epca*0431895
ISBN 978-3-319-11432-3
title Probabilistic Graphical Models
part_title 8745
page_num 535-550
publisher
place Cham Heidelberg NewYork Dordrecht London
name Springer International Publishing
year 2014
editor
name1 van der Gaag
name2 Linda C.
editor
name1 Feelders
name2 Ad J.
keyword Bayesian Networks
keyword Probabilistic Inference
keyword CP Tensor Decomposition
keyword Symmetric Tensor Rank
author (primary)
ARLID cav_un_auth*0101228
share 50
name1 Vomlel
name2 Jiří
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
country CZ
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
share 50
name1 Tichavský
name2 Petr
institution UTIA-B
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
source_type PDF soubor
url http://library.utia.cas.cz/separaty/2014/MTR/vomlel-0431896.pdf
source_size 431 kB
cas_special
project
ARLID cav_un_auth*0292670
project_id GA13-20012S
agency GA ČR
project
ARLID cav_un_auth*0303443
project_id GA14-13713S
agency GA ČR
country CZ
abstract (eng) We propose an approximate probabilistic inference method based on the CP-tensor decomposition and apply it to the well known computer game of Minesweeper. In the method we view conditional probability tables of the exactly l-out-of-k functions as tensors and approximate them by a sum of rank-one tensors. The number of the summands is min{l+1,k-l+1}, which is lower than their exact symmetric tensor rank, which is k. Accuracy of the approximation can be tuned by single scalar parameter. The computer game serves as a prototype for applications of inference mechanisms in Bayesian networks, which are not always tractable due to the dimensionality of the problem, but the tensor decomposition may significantly help.
action
ARLID cav_un_auth*0306406
name 7th European Workshop, PGM 2014,
dates 17.09.2014-19.09.2014
place Utrecht
country NL
RIV IN
FORD0 10000
FORD1 10200
FORD2 10201
reportyear 2015
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0237777
confidential S
mrcbC83 RIV/67985556:_____/14:00431896!RIV15-AV0-67985556 152460049 Doplnění UT WOS a Scopus
mrcbC83 RIV/67985556:_____/14:00431896!RIV15-GA0-67985556 152501092 Doplnění UT WOS a Scopus
arlyear 2014
mrcbU14 84921527707 SCOPUS
mrcbU34 000358253800035 WOS
mrcbU56 PDF soubor 431 kB
mrcbU63 cav_un_epca*0431895 Probabilistic Graphical Models 978-3-319-11432-3 535 550 Cham Heidelberg NewYork Dordrecht London Springer International Publishing 2014 Lecture Notes in Computer Science 8745
mrcbU67 van der Gaag Linda C. 340
mrcbU67 Feelders Ad J. 340