bibtype J - Journal Article
ARLID 0432226
utime 20240103204702.6
mtime 20141013235959.9
WOS 000333503700010
DOI 10.1016/j.ins.2013.12.058
title (primary) (eng) On Stolarsky inequality for Sugeno and Choquet integrals
specification
page_count 6 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 266
volume 1 (2014)
page_num 134-139
publisher
name Elsevier
keyword Stolarski inequality
keyword fuzzy measure
keyword Choquet integral
author (primary)
ARLID cav_un_auth*0261431
name1 Agahi
name2 H.
country IR
share 10
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
garant K
share 60
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0258953
name1 Ouyang
name2 Y.
country CN
share 10
author
ARLID cav_un_auth*0280491
name1 Pap
name2 E.
country RS
share 10
author
ARLID cav_un_auth*0273381
name1 Štrboja
name2 M.
country RS
share 10
source
url http://library.utia.cas.cz/separaty/2014/E/mesiar-0432226.pdf
cas_special
project
project_id GAP402/11/0378
agency GA ČR
ARLID cav_un_auth*0273630
abstract (eng) Recently Flores-Franulič, Román-Flores and Chalco-Cano proved the Stolarsky type inequality for Sugeno integral with respect to the Lebesgue measure λ. The present paper is devoted to generalize this result by relaxing some of its requirements. Moreover, Stolarsky inequality for Choquet integral is added, too.
reportyear 2015
RIV BA
num_of_auth 5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0237120
confidential S
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 0.873
mrcbT16-s 2.226
mrcbT16-4 Q1
mrcbT16-B 74.327
mrcbT16-C 96.043
mrcbT16-D Q2
mrcbT16-E Q1*
arlyear 2014
mrcbU34 000333503700010 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 266 č. 1 2014 134 139 Elsevier