bibtype J - Journal Article
ARLID 0432227
utime 20240103204702.7
mtime 20141013235959.9
WOS 000329003200013
DOI 10.1016/j.ins.2013.09.013
title (primary) (eng) Atoms of weakly null-additive monotone measures and integrals
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0256752
ISSN 0020-0255
title Information Sciences
volume_id 257
volume 1 (2014)
page_num 183-192
publisher
name Elsevier
keyword atom of a measure
keyword weak null-additivty
keyword monotone measure
author (primary)
ARLID cav_un_auth*0205590
name1 Li
name2 J.
country CN
share 20
author
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
institution UTIA-B
full_dept Department of Econometrics
garant K
share 60
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0280491
name1 Pap
name2 E.
country RS
share 20
source
url http://library.utia.cas.cz/separaty/2014/E/mesiar-0432227.pdf
cas_special
project
project_id GAP402/11/0378
agency GA ČR
ARLID cav_un_auth*0273630
abstract (eng) In this paper, we prove some properties of atoms of weakly null-additive monotone measures. By using the regularity and weak null-additivity, a sin-gleton characterization of atoms of monotone measures on a metric space is shown. It is a generalization of previous results obtained by Pap. The calculation of the Sugeno integral and the Choquet integral over an atom is also presented, respectively. Similar results for recently introduced universal integral are also given. Following these results, it is shown that the Sugeno integral and the Choquet integral over an atom of monotone measure is maxitive linear and standard linear, respectively. Convergence theorems for the Sugeno integral and the Choquet integral over an atom of a monotone measure are also shown.
reportyear 2015
RIV BA
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0237121
confidential S
mrcbT16-e COMPUTERSCIENCEINFORMATIONSYSTEMS
mrcbT16-j 0.873
mrcbT16-s 2.226
mrcbT16-4 Q1
mrcbT16-B 74.327
mrcbT16-C 96.043
mrcbT16-D Q2
mrcbT16-E Q1*
arlyear 2014
mrcbU34 000329003200013 WOS
mrcbU63 cav_un_epca*0256752 Information Sciences 0020-0255 1872-6291 Roč. 257 č. 1 2014 183 192 Elsevier