bibtype |
M -
Monography Chapter
|
ARLID |
0433801 |
utime |
20240103204904.1 |
mtime |
20141124235959.9 |
SCOPUS |
84921647861 |
WOS |
000360106900002 |
DOI |
10.1007/978-3-319-08025-3_1 |
title
(primary) (eng) |
Numerical solution of 2D Contact Shape Optimization Problems Involving a Solution-Dependent Coefficient of Friction |
specification |
book_pages |
402 |
page_count |
24 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0430328 |
ISBN |
978-3-319-08024-6 |
title
|
Optimization with PDE Constraints |
page_num |
1-24 |
publisher |
place |
Heidelberg |
name |
Springer |
year |
2014 |
|
editor |
|
|
keyword |
Frictional contact |
keyword |
Nonsmooth analysis |
keyword |
Shape optimization |
author
(primary) |
ARLID |
cav_un_auth*0101173 |
name1 |
Outrata |
name2 |
Jiří |
institution |
UTIA-B |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept (eng) |
Department of Decision Making Theory |
department (cz) |
MTR |
department (eng) |
MTR |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0212850 |
name1 |
Beremlijski |
name2 |
P. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0211704 |
name1 |
Haslinger |
name2 |
J. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0281511 |
name1 |
Pathó |
name2 |
R. |
country |
CZ |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0289475 |
project_id |
GAP201/12/0671 |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
This contribution deals with numerical solution of shape optimization problems in frictional contact mechanics. The state problem in our case is given by 2D static Signorini problems with Tresca friction and a solution-dependent coefficient of friction. A suitable Lipschitz continuity assumption on the coefficient of friction is made, ensuring unique solvability of the discretized state problems and Lipschitz continuity of the corresponding control-to-state mapping. The discrete shape optimization problem can be transformed into a nonsmooth minimization problem and handled by the bundle trust method. In each step of the method, the state problem is solved by the method of successive approximations and necessary subgradient information is computed using the generalized differential calculus of B. Mordukhovich. |
RIV |
BA |
FORD0 |
10000 |
FORD1 |
10100 |
FORD2 |
10101 |
reportyear |
2015 |
num_of_auth |
4 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0239357 |
cooperation |
ARLID |
cav_un_auth*0295946 |
name |
Technická universita v Ostravě |
institution |
TUO |
country |
CZ |
|
cooperation |
ARLID |
cav_un_auth*0296304 |
name |
Matematicko-fyzikální fakulta KU |
institution |
MFF KU |
country |
CZ |
|
confidential |
S |
mrcbC83 |
RIV/67985556:_____/14:00433801!RIV15-AV0-67985556 152461015 Doplnění UT WOS a Scopus |
mrcbC83 |
RIV/67985556:_____/14:00433801!RIV15-GA0-67985556 152501600 Doplnění UT WOS a Scopus |
arlyear |
2014 |
mrcbU14 |
84921647861 SCOPUS |
mrcbU34 |
000360106900002 WOS |
mrcbU63 |
cav_un_epca*0430328 Optimization with PDE Constraints 978-3-319-08024-6 1 24 Heidelberg Springer 2014 Lecture Notes in Computational Science and Engineering 101 |
mrcbU67 |
Hoppe R. 340 |
|