bibtype M - Monography Chapter
ARLID 0433801
utime 20240103204904.1
mtime 20141124235959.9
SCOPUS 84921647861
WOS 000360106900002
DOI 10.1007/978-3-319-08025-3_1
title (primary) (eng) Numerical solution of 2D Contact Shape Optimization Problems Involving a Solution-Dependent Coefficient of Friction
specification
book_pages 402
page_count 24 s.
media_type P
serial
ARLID cav_un_epca*0430328
ISBN 978-3-319-08024-6
title Optimization with PDE Constraints
page_num 1-24
publisher
place Heidelberg
name Springer
year 2014
editor
name1 Hoppe
name2 R.
keyword Frictional contact
keyword Nonsmooth analysis
keyword Shape optimization
author (primary)
ARLID cav_un_auth*0101173
name1 Outrata
name2 Jiří
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0212850
name1 Beremlijski
name2 P.
country CZ
author
ARLID cav_un_auth*0211704
name1 Haslinger
name2 J.
country CZ
author
ARLID cav_un_auth*0281511
name1 Pathó
name2 R.
country CZ
source
url http://library.utia.cas.cz/separaty/2014/MTR/outrata-0433801.pdf
cas_special
project
ARLID cav_un_auth*0289475
project_id GAP201/12/0671
agency GA ČR
country CZ
abstract (eng) This contribution deals with numerical solution of shape optimization problems in frictional contact mechanics. The state problem in our case is given by 2D static Signorini problems with Tresca friction and a solution-dependent coefficient of friction. A suitable Lipschitz continuity assumption on the coefficient of friction is made, ensuring unique solvability of the discretized state problems and Lipschitz continuity of the corresponding control-to-state mapping. The discrete shape optimization problem can be transformed into a nonsmooth minimization problem and handled by the bundle trust method. In each step of the method, the state problem is solved by the method of successive approximations and necessary subgradient information is computed using the generalized differential calculus of B. Mordukhovich.
RIV BA
FORD0 10000
FORD1 10100
FORD2 10101
reportyear 2015
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0239357
cooperation
ARLID cav_un_auth*0295946
name Technická universita v Ostravě
institution TUO
country CZ
cooperation
ARLID cav_un_auth*0296304
name Matematicko-fyzikální fakulta KU
institution MFF KU
country CZ
confidential S
mrcbC83 RIV/67985556:_____/14:00433801!RIV15-AV0-67985556 152461015 Doplnění UT WOS a Scopus
mrcbC83 RIV/67985556:_____/14:00433801!RIV15-GA0-67985556 152501600 Doplnění UT WOS a Scopus
arlyear 2014
mrcbU14 84921647861 SCOPUS
mrcbU34 000360106900002 WOS
mrcbU63 cav_un_epca*0430328 Optimization with PDE Constraints 978-3-319-08024-6 1 24 Heidelberg Springer 2014 Lecture Notes in Computational Science and Engineering 101
mrcbU67 Hoppe R. 340