bibtype J - Journal Article
ARLID 0434201
utime 20240103204931.9
mtime 20141106235959.9
SCOPUS 84947254896
WOS 000408772300001
DOI 10.1080/07474938.2014.977057
title (primary) (eng) Modeling and Forecasting Persistent Financial Durations
specification
page_count 43 s.
media_type P
serial
ARLID cav_un_epca*0293034
ISSN 0747-4938
title Econometric Reviews
volume_id 36
volume 10 (2017)
page_num 1081-1110
publisher
name Taylor & Francis
keyword price durations
keyword long memory
keyword multifractal models
keyword realized volatility
keyword Whittle estimation
author (primary)
ARLID cav_un_auth*0308943
share 30
name1 Žikeš
name2 F.
country GB
garant K
author
ARLID cav_un_auth*0242028
full_dept (cz) Ekonometrie
full_dept Department of Econometrics
department (cz) E
department E
full_dept Department of Econometrics
share 40
name1 Baruník
name2 Jozef
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0308944
share 30
name1 Shenai
name2 N.
country GB
source
url http://library.utia.cas.cz/separaty/2014/E/barunik-0434201.pdf
cas_special
project
ARLID cav_un_auth*0292677
project_id GA13-32263S
agency GA ČR
project
ARLID cav_un_auth*0308905
project_id 612955
agency EC
abstract (eng) This paper introduces the Markov-Switching Multifractal Duration (MSMD) model by adapting the MSM stochastic volatility model of Calvet and Fisher (2004) to the duration setting. Although the MSMD process is exponential beta-mixing as we show in the paper, it is capable of generating highly persistent autocorrelation. We study analytically and by simulation how this feature of durations generated by the MSMD process propagates to counts and realized volatility. We employ a quasi-maximum likelihood estimator of the MSMD parameters based on the Whit- tle approximation and establish its strong consistency and asymptotic normality for general MSMD specifications. We show that the Whittle estimation is a computa- tionally simple and fast alternative to maximum likelihood. Finally, we compare the performance of the MSMD model with competing short- and long-memory duration models in an out-of-sample forecasting exercise based on price durations of three major foreign exchange futures contracts.
result_subspec WOS
RIV AH
FORD0 50000
FORD1 50200
FORD2 50202
reportyear 2018
num_of_auth 3
mrcbC52 4 A hod 4ah 4a 20231122140548.2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0238358
mrcbC64 1 Department of Econometrics UTIA-B 50202 ECONOMICS
confidential S
mrcbC86 3+4 Article Economics|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods|Statistics Probability
mrcbC86 2 Article Economics|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods|Statistics Probability
mrcbC86 2 Article Economics|Mathematics Interdisciplinary Applications|Social Sciences Mathematical Methods|Statistics Probability
mrcbT16-e ECONOMICS|MATHEMATICSINTERDISCIPLINARYAPPLICATIONS|SOCIALSCIENCESMATHEMATICALMETHODS|STATISTICSPROBABILITY
mrcbT16-j 1.599
mrcbT16-s 1.797
mrcbT16-B 80.01
mrcbT16-D Q1
mrcbT16-E Q1
arlyear 2017
mrcbTft \nSoubory v repozitáři: barunik-0434201.pdf, barunik-0434201.pdf
mrcbU14 84947254896 SCOPUS
mrcbU34 000408772300001 WOS
mrcbU63 cav_un_epca*0293034 Econometric Reviews 0747-4938 1532-4168 Roč. 36 č. 10 2017 1081 1110 Taylor & Francis