bibtype J - Journal Article
ARLID 0434234
utime 20240103204934.1
mtime 20141124235959.9
SCOPUS 84911059522
WOS 000344748000027
DOI 10.1137/130948070
title (primary) (eng) Shape Optimization in Contact Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient
specification
page_count 30 s.
media_type P
serial
ARLID cav_un_epca*0257596
ISSN 0363-0129
title SIAM Journal on Control and Optimization
volume_id 52
volume 5 (2014)
page_num 3371-3400
publisher
name SIAM Society for Industrial and Applied Mathematics
keyword shape optimization
keyword contact problems
keyword Coulomb friction
keyword solution-dependent coefficient of friction
keyword mathematical programs with equilibrium constraints
author (primary)
ARLID cav_un_auth*0212850
name1 Beremlijski
name2 P.
country CZ
author
ARLID cav_un_auth*0101173
name1 Outrata
name2 Jiří
institution UTIA-B
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0211704
name1 Haslinger
name2 J.
country CZ
author
ARLID cav_un_auth*0281511
name1 Pathó
name2 R.
country CZ
source
url http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434234.pdf
cas_special
project
project_id GAP201/12/0671
agency GA ČR
country CZ
ARLID cav_un_auth*0289475
project
project_id CZ.1.05/1.1.00/02.0070
agency GA MŠK
country CZ
ARLID cav_un_auth*0309973
project
project_id CZ.1.07/2.3.00/20.0070
agency GA MŠK
country CZ
ARLID cav_un_auth*0310061
abstract (eng) The present paper deals with shape optimization in discretized two-dimensional (2D) contact problems with Coulomb friction, where the coefficient of friction is assumed to depend on the unknown solution. Discretization of the continuous state problem leads to a system of finite-dimensional implicit variational inequalities, parametrized by the so-called design variable, that determines the shape of the underlying domain. It is shown that if the coefficient of friction is Lipschitz and sufficiently small in the C0,1-norm, then the discrete state problems are uniquely solvable for all admissible values of the design variable (the admissible set is assumed to be compact), and the state variables are Lipschitzian functions of the design variable. This facilitates the numerical solution of the discretized shape optimization problem by the so-called implicit programming approach.
RIV BA
reportyear 2015
num_of_auth 4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0239356
cooperation
ARLID cav_un_auth*0295947
name Vysoká škola báňská - Technická univerzita Ostrava
institution VŠB
country CZ
cooperation
ARLID cav_un_auth*0296304
name Matematicko-fyzikální fakulta KU
institution MFF KU
country CZ
confidential S
mrcbT16-e AUTOMATIONCONTROLSYSTEMS|MATHEMATICSAPPLIED
mrcbT16-j 1.443
mrcbT16-s 1.615
mrcbT16-4 Q1
mrcbT16-B 89.021
mrcbT16-C 69.081
mrcbT16-D Q1*
mrcbT16-E Q1*
arlyear 2014
mrcbU14 84911059522 SCOPUS
mrcbU34 000344748000027 WOS
mrcbU63 cav_un_epca*0257596 SIAM Journal on Control and Optimization 0363-0129 1095-7138 Roč. 52 č. 5 2014 3371 3400 SIAM Society for Industrial and Applied Mathematics