bibtype J - Journal Article
ARLID 0434417
utime 20240103204947.8
mtime 20141124235959.9
SCOPUS 84907249388
WOS 000341776500001
DOI 10.3934/dcdsb.2014.19.2709
title (primary) (eng) On optimal control of a sweeping process coupled with an ordinary differential equation
specification
page_count 30 s.
media_type P
serial
ARLID cav_un_epca*0257845
ISSN 1531-3492
title Discrete and Continuous Dynamical Systems-Series B
volume_id 19
volume 9 (2014)
page_num 2709-2738
publisher
name AIMS Press
keyword optimal control
keyword variational inequality
keyword variational analysis
keyword coderivative
keyword solution map
keyword queuing theory
author (primary)
ARLID cav_un_auth*0309054
full_dept (cz) Matematická teorie rozhodování
full_dept (eng) Department of Decision Making Theory
department (cz) MTR
department (eng) MTR
full_dept Department of Decision Making Theory
name1 Adam
name2 Lukáš
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101173
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Outrata
name2 Jiří
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/MTR/adam-0434417.pdf
cas_special
project
ARLID cav_un_auth*0289475
project_id GAP201/12/0671
agency GA ČR
country CZ
project
ARLID cav_un_auth*0294527
project_id SVV-2013-267315
agency GA MŠk
country CZ
abstract (eng) We study a special case of an optimal control problem governed by a differential equation and a differential rate-independent variational inequality, both with given initial conditions. Under certain conditions, the variational inequality can be reformulated as a differential inclusion with discontinuous right-hand side. This inclusion is known as sweeping process. We perform a discretization scheme and prove the convergence of optimal solutions of the discretized problems to the optimal solution of the original problem. For the discretized problems we study the properties of the solution map and compute its coderivative. Employing an appropriate chain rule, this enables us to compute the subdifferential of the objective function and to apply a suitable optimization technique to solve the discretized problems. The investigated problem is used to model a situation arising in the area of queuing theory.
RIV BA
reportyear 2015
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0239354
cooperation
ARLID cav_un_auth*0296304
name Matematicko-fyzikální fakulta KU
institution MFF KU
country CZ
confidential S
mrcbT16-e MATHEMATICSAPPLIED
mrcbT16-j 0.693
mrcbT16-s 0.792
mrcbT16-4 Q2
mrcbT16-B 56.271
mrcbT16-C 42.607
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2014
mrcbU14 84907249388 SCOPUS
mrcbU34 000341776500001 WOS
mrcbU63 cav_un_epca*0257845 Discrete and Continuous Dynamical Systems-Series B 1531-3492 1553-524X Roč. 19 č. 9 2014 2709 2738 AIMS Press