bibtype C - Conference Paper (international conference)
ARLID 0434674
utime 20240103205005.2
mtime 20150106235959.9
SCOPUS 84915749481
WOS 000354869400016
DOI 10.1007/978-3-319-12436-0_16
title (primary) (eng) Lazy Fully Probabilistic Design of Decision Strategies
specification
page_count 10 s.
media_type P
serial
ARLID cav_un_epca*0434673
ISBN 978-3-319-12435-3
title Advances in Neural Networks – ISNN 2014
part_title Lecture Notes in Computer Science
page_num 140-149
publisher
place Cham
name Springer
year 2014
editor
name1 Zhigang
name2 Zeng
editor
name1 Yangmin
name2 Li
editor
name1 King
name2 Irwin
keyword decision making
keyword lazy learning
keyword Bayesian learning
keyword local model
author (primary)
ARLID cav_un_auth*0101124
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
name1 Kárný
name2 Miroslav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0292010
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
name1 Macek
name2 Karel
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101092
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
name1 Guy
name2 Tatiana Valentine
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/AS/karny-0434674.pdf
cas_special
project
ARLID cav_un_auth*0292725
project_id GA13-13502S
agency GA ČR
abstract (eng) Fully probabilistic design of decision strategies (FPD) extends Bayesian dynamic decision making. The FPD species the decision aim via so-called ideal - a probability density, which assigns high probability values to the desirable behaviours and low values to undesirable ones. The optimal decision strategy minimises the Kullback-Leibler divergence of the probability density describing the closed-loop behaviour to this ideal. In spite of the availability of explicit minimisers in the corresponding dynamic programming, it suers from the curse of dimensionality connected with complexity of the value function. Recently proposed a lazy FPD tailors lazy learning, which builds a local model around the current behaviour, to estimation of the closed-loop model with the optimal strategy. This paper adds a theoretical support to the lazy FPD and outlines its further improvement.
action
ARLID cav_un_auth*0309231
name 11th International Symposium on Neural Networks, ISNN 2014
dates 28.11.2014-01.12.2014
place Hong Kong and Macao
country CN
RIV BB
reportyear 2015
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0241883
confidential S
arlyear 2014
mrcbU14 84915749481 SCOPUS
mrcbU34 000354869400016 WOS
mrcbU63 cav_un_epca*0434673 Advances in Neural Networks – ISNN 2014 Lecture Notes in Computer Science 978-3-319-12435-3 140 149 Advances in Neural Networks – ISNN 2014 Cham Springer 2014 Lecture Notes in Computer Science XVI 8866
mrcbU67 Zhigang Zeng 340
mrcbU67 Yangmin Li 340
mrcbU67 King Irwin 340