bibtype J - Journal Article
ARLID 0434809
utime 20240111140853.8
mtime 20141120235959.9
SCOPUS 84912550395
WOS 000345972000007
DOI 10.1111/jmi.12186
title (primary) (eng) Performance evaluation of image segmentation algorithms on microscopic image data
specification
page_count 21
media_type P
serial
ARLID cav_un_epca*0257031
ISSN 0022-2720
title Journal of Microscopy
volume_id 275
volume 1 (2015)
page_num 65-85
publisher
name Wiley
keyword image segmentation
keyword performance evaluation
keyword microscopic images
author (primary)
ARLID cav_un_auth*0213982
full_dept (cz) Zpracování obrazové informace
full_dept (eng) Department of Image Processing
department (cz) ZOI
department (eng) ZOI
name1 Beneš
name2 Miroslav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101238
full_dept (cz) Zpracování obrazové informace
full_dept Department of Image Processing
department (cz) ZOI
department ZOI
full_dept Department of Image Processing
name1 Zitová
name2 Barbara
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/ZOI/zitova-0434809-DOI.pdf
source_size 16MB
cas_special
project
ARLID cav_un_auth*0285028
project_id GAP103/12/2211
agency GA ČR
abstract (eng) In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and "the best" method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behavior of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms.
RIV JC
reportyear 2017
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122140604.4
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0239122
mrcbC64 1 Department of Image Processing UTIA-B 10200 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
confidential S
mrcbT16-e MICROSCOPY
mrcbT16-j 0.758
mrcbT16-s 0.962
mrcbT16-4 Q1
mrcbT16-B 58.742
mrcbT16-C 75.000
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2015
mrcbTft \nSoubory v repozitáři: benes-0434809.pdf
mrcbU14 84912550395 SCOPUS
mrcbU34 000345972000007 WOS
mrcbU56 16MB
mrcbU63 cav_un_epca*0257031 Journal of Microscopy 0022-2720 1365-2818 Roč. 275 č. 1 2015 65 85 Wiley