bibtype C - Conference Paper (international conference)
ARLID 0436547
utime 20240103205225.1
mtime 20150119235959.9
SCOPUS 84928523007
WOS 000380564200009
DOI 10.1109/SITIS.2014.48
title (primary) (eng) Accurate Detection of Non-Iris Occlusions
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0436546
ISBN 978-1-4799-7978-3
title Proceedings of the Tenth International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2014
page_num 49-56
publisher
place Los Alamitos, USA
name IEEE Computer Society CPS
year 2014
editor
name1 Yetongno
name2 Kokou
editor
name1 Dipanda
name2 Albert
editor
name1 Chbeir
name2 Richard
keyword iris occlusions
keyword detection
keyword textural model
author (primary)
ARLID cav_un_auth*0101093
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
name1 Haindl
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0292156
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
name1 Krupička
name2 Mikuláš
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/RO/haindl-0436547.pdf
cas_special
project
ARLID cav_un_auth*0303439
project_id GA14-10911S
agency GA ČR
country CZ
abstract (eng) Accurate detection of iris eyelids and reflections is the prerequisite for the accurate iris recognition, both in near-infrared or visible spectrum measurements. Undected iris occlusions otherwise dramatically decrease the iris recognition rate. This paper presents a fast multispectral iris occlusions detection method based on the underlying multispectral spatial probabilistic iris textural model and adaptive thresholding. The model adaptively learns its parameters on the iris texture part and subsequently checks for iris reflections, eyelashes, and eyelids using the recursive prediction analysis. Our method obtains better accuracy with respect to the previously performed Noisy Iris Challenge Evaluation contest. It ranked first from the 97+2 alternative methods on this large colour iris database.
action
ARLID cav_un_auth*0310868
name Tenth International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2014)
dates 23.11.2014-27.11.2014
place Marrakech
country MA
RIV BD
reportyear 2015
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0242825
confidential S
arlyear 2014
mrcbU14 84928523007 SCOPUS
mrcbU34 000380564200009 WOS
mrcbU63 cav_un_epca*0436546 Proceedings of the Tenth International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2014 978-1-4799-7978-3 49 56 Los Alamitos, USA IEEE Computer Society CPS 2014
mrcbU67 Yetongno Kokou 340
mrcbU67 Dipanda Albert 340
mrcbU67 Chbeir Richard 340