bibtype C - Conference Paper (international conference)
ARLID 0436549
utime 20240103205225.4
mtime 20150119235959.9
SCOPUS 84928562793
WOS 000380564200011
DOI 10.1109/SITIS.2014.53
title (primary) (eng) Adaptive Model-Based Mammogram Enhancement
specification
page_count 8 s.
media_type P
serial
ARLID cav_un_epca*0436546
ISBN 978-1-4799-7978-3
title Proceedings of the Tenth International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2014
page_num 65-72
publisher
place Los Alamitos, USA
name IEEE Computer Society CPS
year 2014
editor
name1 Yetongno
name2 Kokou
editor
name1 Dipanda
name2 Albert
editor
name1 Chbeir
name2 Richard
keyword mammography
keyword image enhancement
keyword MRF
keyword textural models
author (primary)
ARLID cav_un_auth*0101093
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
full_dept Department of Pattern Recognition
name1 Haindl
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0286710
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
full_dept Department of Pattern Recognition
name1 Remeš
name2 Václav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2014/RO/haindl-0436549.pdf
cas_special
project
ARLID cav_un_auth*0303439
project_id GA14-10911S
agency GA ČR
country CZ
abstract (eng) Five fully automatic methods for X-ray digital mammogram enhancement based on a fast analytical textural model are presented. These efficient single and double view enhancement methods are based on the underlying two-dimensional adaptive causal autoregressive texture model. The~methods locally predict breast tissue texture from single or double view mammograms and enhance breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction statistics. The~double-view mammogram enhancement is based on the cross-prediction of two mutually registered left and right breasts mammograms or alternatively a temporal sequence of mammograms. The single-view mammogram enhancement is based on modeling prediction error in case of not the both breasts' mammograms are available.
action
ARLID cav_un_auth*0310868
name Tenth International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2014)
dates 23.11.2014-27.11.2014
place Marrakech
country MA
RIV BD
reportyear 2015
num_of_auth 2
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0242828
confidential S
arlyear 2014
mrcbU14 84928562793 SCOPUS
mrcbU34 000380564200011 WOS
mrcbU63 cav_un_epca*0436546 Proceedings of the Tenth International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2014 978-1-4799-7978-3 65 72 Los Alamitos, USA IEEE Computer Society CPS 2014
mrcbU67 Yetongno Kokou 340
mrcbU67 Dipanda Albert 340
mrcbU67 Chbeir Richard 340