bibtype |
C -
Conference Paper (international conference)
|
ARLID |
0436549 |
utime |
20240103205225.4 |
mtime |
20150119235959.9 |
SCOPUS |
84928562793 |
WOS |
000380564200011 |
DOI |
10.1109/SITIS.2014.53 |
title
(primary) (eng) |
Adaptive Model-Based Mammogram Enhancement |
specification |
page_count |
8 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0436546 |
ISBN |
978-1-4799-7978-3 |
title
|
Proceedings of the Tenth International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2014 |
page_num |
65-72 |
publisher |
place |
Los Alamitos, USA |
name |
IEEE Computer Society CPS |
year |
2014 |
|
editor |
name1 |
Yetongno |
name2 |
Kokou |
|
editor |
name1 |
Dipanda |
name2 |
Albert |
|
editor |
name1 |
Chbeir |
name2 |
Richard |
|
|
keyword |
mammography |
keyword |
image enhancement |
keyword |
MRF |
keyword |
textural models |
author
(primary) |
ARLID |
cav_un_auth*0101093 |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept (eng) |
Department of Pattern Recognition |
department (cz) |
RO |
department (eng) |
RO |
full_dept |
Department of Pattern Recognition |
name1 |
Haindl |
name2 |
Michal |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0286710 |
full_dept (cz) |
Rozpoznávání obrazu |
full_dept |
Department of Pattern Recognition |
department (cz) |
RO |
department |
RO |
full_dept |
Department of Pattern Recognition |
name1 |
Remeš |
name2 |
Václav |
institution |
UTIA-B |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
ARLID |
cav_un_auth*0303439 |
project_id |
GA14-10911S |
agency |
GA ČR |
country |
CZ |
|
abstract
(eng) |
Five fully automatic methods for X-ray digital mammogram enhancement based on a fast analytical textural model are presented. These efficient single and double view enhancement methods are based on the underlying two-dimensional adaptive causal autoregressive texture model. The~methods locally predict breast tissue texture from single or double view mammograms and enhance breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction statistics. The~double-view mammogram enhancement is based on the cross-prediction of two mutually registered left and right breasts mammograms or alternatively a temporal sequence of mammograms. The single-view mammogram enhancement is based on modeling prediction error in case of not the both breasts' mammograms are available. |
action |
ARLID |
cav_un_auth*0310868 |
name |
Tenth International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2014) |
dates |
23.11.2014-27.11.2014 |
place |
Marrakech |
country |
MA |
|
RIV |
BD |
reportyear |
2015 |
num_of_auth |
2 |
presentation_type |
PR |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0242828 |
confidential |
S |
arlyear |
2014 |
mrcbU14 |
84928562793 SCOPUS |
mrcbU34 |
000380564200011 WOS |
mrcbU63 |
cav_un_epca*0436546 Proceedings of the Tenth International Conference on Signal-Image Technology & Internet-Based Systems, SITIS 2014 978-1-4799-7978-3 65 72 Los Alamitos, USA IEEE Computer Society CPS 2014 |
mrcbU67 |
Yetongno Kokou 340 |
mrcbU67 |
Dipanda Albert 340 |
mrcbU67 |
Chbeir Richard 340 |
|