bibtype C - Conference Paper (international conference)
ARLID 0436705
utime 20240103205237.7
mtime 20150121235959.9
SCOPUS 84910649502
WOS 000347877900084
DOI 10.1007/978-3-319-05789-7_84
title (primary) (eng) A Nonlinear Domain Decomposition Technique for Scalar Elliptic PDEs
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0439880
ISBN 978-3-319-05788-0
title Domain Decomposition Methods in Science and Engineering XXI
page_num 869-877
publisher
place Cham
name Springer
year 2014
keyword domain decompositiond
keyword nonlinear partial differential equations
keyword Newton–Krylov method
author (primary)
ARLID cav_un_auth*0289253
name1 Turner
name2 J.
country GB
author
ARLID cav_un_auth*0101131
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
full_dept Department of Decision Making Theory
name1 Kočvara
name2 Michal
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0313203
name1 Loghin
name2 D.
country GB
source
url http://library.utia.cas.cz/separaty/2014/MTR/kocvara-0436705.pdf
cas_special
project
ARLID cav_un_auth*0241214
project_id IAA100750802
agency GA AV ČR
abstract (eng) Nonlinear problems are ubiquitous in a variety of areas, including fluid dynamics, biomechanics, viscoelasticity and finance, to name a few. A number of computational methods exist already for solving such problems, with the general approach being Newton-Krylov type methods coupled with an appropriate preconditioner. However, it is known that the strongest nonlinearity in a domain can directly impact the convergence of Newton-type algorithms. Therefore, local nonlinearities may have a direct impact on the global convergence of Newton’s method, as illustrated in both [3] and [5]. Consequently, Newton-Krylov approaches can be expected to struggle when faced with domains containing local nonlinearities.
action
ARLID cav_un_auth*0313204
name Domain Decomposition Methods 2012 /21./
dates 25.06.2012-29.06.2012
place Le Chesnay Cedex
country FR
RIV BA
reportyear 2015
num_of_auth 3
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0243058
confidential S
arlyear 2014
mrcbU14 84910649502 SCOPUS
mrcbU34 000347877900084 WOS
mrcbU63 cav_un_epca*0439880 Domain Decomposition Methods in Science and Engineering XXI 978-3-319-05788-0 869 877 Cham Springer 2014 Lecture Notes in Computational Science and Engineering 98