bibtype J - Journal Article
ARLID 0436865
utime 20240103205248.2
mtime 20141204235959.9
WOS 000304722200008
DOI 10.1016/j.jspi.2012.03.019
title (primary) (eng) Decomposable pseudodistances and applications in statistical estimation
specification
page_count 28 s.
media_type P
serial
ARLID cav_un_epca*0257116
ISSN 0378-3758
title Journal of Statistical Planning and Inference
volume_id 142
volume 9 (2012)
page_num 2574-2585
publisher
name Elsevier
keyword Parametric model
keyword Pseudodistance
keyword Influence function
author (primary)
ARLID cav_un_auth*0255501
name1 Broniatowski
name2 M.
country FR
author
ARLID cav_un_auth*0101218
name1 Vajda
name2 Igor
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2012/SI/vajda-0436865.pdf
cas_special
research CEZ:AV0Z10750506
abstract (eng) The aim of this paper is to introduce new statistical criteria for estimation, suitable for inference in models with common continuous support. This proposal is in the direct line of a renewed interest for divergence based inference tools imbedding the most classical ones, such as maximum likelihood, Chi-square or Kullback-Leibler. General pseudodistances with decomposable structure are considered, they allowing defining minimum pseudodistance estimators, without using nonparametric density estimators. A special class of pseudodistances indexed by alpha > 0, leading for alpha down arrow 0 to the Kullback-Leibler divergence, is presented in detail. Corresponding estimation criteria are developed and asymptotic properties are studied. The estimation method is then extended to regression models. Finally, some examples based on Monte Carlo simulations are discussed.
reportyear 2015
RIV BB
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0240501
confidential S
mrcbT16-e STATISTICSPROBABILITY
mrcbT16-f 0.784
mrcbT16-g 0.084
mrcbT16-h 7.2
mrcbT16-i 0.01798
mrcbT16-j 0.617
mrcbT16-k 3205
mrcbT16-l 285
mrcbT16-q 39
mrcbT16-s 0.913
mrcbT16-y 19.93
mrcbT16-x 0.82
mrcbT16-4 Q2
mrcbT16-B 34.702
mrcbT16-C 38.034
mrcbT16-D Q3
mrcbT16-E Q2
arlyear 2012
mrcbU34 000304722200008 WOS
mrcbU63 cav_un_epca*0257116 Journal of Statistical Planning and Inference 0378-3758 1873-1171 Roč. 142 č. 9 2012 2574 2585 Elsevier