bibtype J - Journal Article
ARLID 0441661
utime 20240903170631.9
mtime 20150224235959.9
WOS 000348961900008
SCOPUS 84920595650
DOI 10.14736/kyb-2014-6-0978
title (primary) (eng) Verification of functional a posteriori error estimates for obstacle problem in 2D
specification
page_count 25 s.
media_type P
serial
ARLID cav_un_epca*0297163
ISSN 0023-5954
title Kybernetika
volume_id 50
volume 6 (2014)
page_num 978-1002
publisher
name Ústav teorie informace a automatizace AV ČR, v. v. i.
keyword obstacle problem
keyword a posteriori error estimate
keyword finite element method
keyword variational inequalities
author (primary)
ARLID cav_un_auth*0300281
name1 Harasim
name2 P.
country CZ
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/MTR/valdman-0441661.pdf
cas_special
project
project_id GA13-18652S
agency GA ČR
ARLID cav_un_auth*0292653
abstract (eng) We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart–Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter β. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.
reportyear 2015
RIV BA
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0244679
cooperation
ARLID cav_un_auth*0305160
institution VUT Brno
name Vysoké učení technické v Brně, Fakulta stavební
country CZ
confidential S
mrcbT16-e COMPUTERSCIENCECYBERNETICS
mrcbT16-j 0.339
mrcbT16-s 0.369
mrcbT16-4 Q2
mrcbT16-B 42.435
mrcbT16-C 14.583
mrcbT16-D Q3
mrcbT16-E Q3
arlyear 2014
mrcbU14 84920595650 SCOPUS
mrcbU34 000348961900008 WOS
mrcbU63 cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 50 č. 6 2014 978 1002 Ústav teorie informace a automatizace AV ČR, v. v. i.