bibtype |
J -
Journal Article
|
ARLID |
0441661 |
utime |
20240903170631.9 |
mtime |
20150224235959.9 |
WOS |
000348961900008 |
SCOPUS |
84920595650 |
DOI |
10.14736/kyb-2014-6-0978 |
title
(primary) (eng) |
Verification of functional a posteriori error estimates for obstacle problem in 2D |
specification |
page_count |
25 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0297163 |
ISSN |
0023-5954 |
title
|
Kybernetika |
volume_id |
50 |
volume |
6 (2014) |
page_num |
978-1002 |
publisher |
name |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
|
keyword |
obstacle problem |
keyword |
a posteriori error estimate |
keyword |
finite element method |
keyword |
variational inequalities |
author
(primary) |
ARLID |
cav_un_auth*0300281 |
name1 |
Harasim |
name2 |
P. |
country |
CZ |
|
author
|
ARLID |
cav_un_auth*0292941 |
name1 |
Valdman |
name2 |
Jan |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA13-18652S |
agency |
GA ČR |
ARLID |
cav_un_auth*0292653 |
|
abstract
(eng) |
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart–Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter β. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant. |
reportyear |
2015 |
RIV |
BA |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0244679 |
cooperation |
ARLID |
cav_un_auth*0305160 |
institution |
VUT Brno |
name |
Vysoké učení technické v Brně, Fakulta stavební |
country |
CZ |
|
confidential |
S |
mrcbT16-e |
COMPUTERSCIENCECYBERNETICS |
mrcbT16-j |
0.339 |
mrcbT16-s |
0.369 |
mrcbT16-4 |
Q2 |
mrcbT16-B |
42.435 |
mrcbT16-C |
14.583 |
mrcbT16-D |
Q3 |
mrcbT16-E |
Q3 |
arlyear |
2014 |
mrcbU14 |
84920595650 SCOPUS |
mrcbU34 |
000348961900008 WOS |
mrcbU63 |
cav_un_epca*0297163 Kybernetika 0023-5954 Roč. 50 č. 6 2014 978 1002 Ústav teorie informace a automatizace AV ČR, v. v. i. |
|