bibtype J - Journal Article
ARLID 0442006
utime 20240103205832.2
mtime 20150415235959.9
WOS 000345440400002
SCOPUS 84912150161
DOI 10.1016/j.fss.2014.05.003
title (primary) (eng) Superdecomposition integrals
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0256642
ISSN 0165-0114
title Fuzzy Sets and Systems
volume_id 259
volume 1 (2015)
page_num 3-11
publisher
name Elsevier
keyword Choquet integral
keyword Decomposition integral
keyword Superdecomposition integral
keyword Convex integral
author (primary)
ARLID cav_un_auth*0101163
name1 Mesiar
name2 Radko
full_dept (cz) Ekonometrie
full_dept (eng) Department of Econometrics
department (cz) E
department (eng) E
institution UTIA-B
full_dept Department of Econometrics
garant S
share 60
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0205590
name1 Li
name2 J.
country CN
garant K
share 20
author
ARLID cav_un_auth*0280491
name1 Pap
name2 E.
country RS
share 20
source
url http://library.utia.cas.cz/separaty/2015/E/mesiar-0442006.pdf
cas_special
project
project_id GAP402/11/0378
agency GA ČR
ARLID cav_un_auth*0273630
abstract (eng) This study introduces and discusses a new class of integrals based on superdecompositions of integrated functions, including an analysis of their relationship with decomposition integrals, which were introduced recently by Even and Lehrer. The proposed superdecomposition integrals have several properties that are similar or dual with respect to decomposition integrals, but they also have some significant differences. The convex integral is obtained by considering all possible superdecompositions with no constraints on the applied sets, which can be treated as the greatest convex homogeneous functional that is bounded from above by the measure we consider. The relationship with the universal integral of Klement et al. is also discussed. Finally, some possible generalizations are outlined.
reportyear 2016
RIV BA
num_of_auth 3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0246075
confidential S
mrcbT16-e COMPUTERSCIENCETHEORYMETHODS|MATHEMATICSAPPLIED|STATISTICSPROBABILITY
mrcbT16-j 0.555
mrcbT16-s 1.354
mrcbT16-4 Q1
mrcbT16-B 42.575
mrcbT16-C 90.864
mrcbT16-D Q3
mrcbT16-E Q1*
arlyear 2015
mrcbU14 84912150161 SCOPUS
mrcbU34 000345440400002 WOS
mrcbU63 cav_un_epca*0256642 Fuzzy Sets and Systems 0165-0114 1872-6801 Roč. 259 č. 1 2015 3 11 Elsevier