bibtype |
M -
Monography Chapter
|
ARLID |
0444036 |
utime |
20240103210055.0 |
mtime |
20150526235959.9 |
DOI |
10.1016/B978-0-12-802806-3.00002-6 |
title
(primary) (eng) |
Improved variants of the FastICA algorithm |
specification |
page_count |
22 s. |
media_type |
P |
book_pages |
296 |
|
serial |
ARLID |
cav_un_epca*0444035 |
ISBN |
978-0-12-802806-3 |
title
|
Advances in Independent Component Analysis and Learning Machines |
page_num |
53-74 |
publisher |
place |
Londýn |
name |
Elsevier |
year |
2015 |
|
editor |
|
editor |
|
editor |
name1 |
Laaksonen |
name2 |
Jorma |
|
editor |
name1 |
Lampinen |
name2 |
Jouko |
|
|
keyword |
independent component analysis |
keyword |
blind source separation |
keyword |
FastICA |
keyword |
efica |
keyword |
Cramer-Rao lower bound |
author
(primary) |
ARLID |
cav_un_auth*0108100 |
name1 |
Koldovský |
name2 |
Zbyněk |
full_dept (cz) |
Stochastická informatika |
full_dept (eng) |
Department of Stochastic Informatics |
department (cz) |
SI |
department (eng) |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
author
|
ARLID |
cav_un_auth*0101212 |
name1 |
Tichavský |
name2 |
Petr |
full_dept (cz) |
Stochastická informatika |
full_dept |
Department of Stochastic Informatics |
department (cz) |
SI |
department |
SI |
institution |
UTIA-B |
full_dept |
Department of Stochastic Informatics |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA14-13713S |
agency |
GA ČR |
country |
CZ |
ARLID |
cav_un_auth*0303443 |
|
abstract
(eng) |
The article presents a survey of improved variants of the famous FastICA algorithm for Independent Component Analysis. Variants of the algorithm tailored to separate mixtures of stationary non-Gaussian signals and mixtures of nonstationary (block-wise stationary) non-Gaussian signals are described. Performance analyses of the algorithms are given and compared to the respective Cramer-Rao lower bounds. The behavior of FastICA variants when additive noise is present in the signal mixture is studied through a bias analysis. |
reportyear |
2016 |
RIV |
BB |
num_of_auth |
2 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0246783 |
confidential |
S |
arlyear |
2015 |
mrcbU63 |
cav_un_epca*0444035 Advances in Independent Component Analysis and Learning Machines 978-0-12-802806-3 53 74 Londýn Elsevier 2015 |
mrcbU67 |
Bingham Ella 340 |
mrcbU67 |
Kaski Samuel 340 |
mrcbU67 |
Laaksonen Jorma 340 |
mrcbU67 |
Lampinen Jouko 340 |
|