bibtype M - Monography Chapter
ARLID 0444036
utime 20240103210055.0
mtime 20150526235959.9
DOI 10.1016/B978-0-12-802806-3.00002-6
title (primary) (eng) Improved variants of the FastICA algorithm
specification
page_count 22 s.
media_type P
book_pages 296
serial
ARLID cav_un_epca*0444035
ISBN 978-0-12-802806-3
title Advances in Independent Component Analysis and Learning Machines
page_num 53-74
publisher
place Londýn
name Elsevier
year 2015
editor
name1 Bingham
name2 Ella
editor
name1 Kaski
name2 Samuel
editor
name1 Laaksonen
name2 Jorma
editor
name1 Lampinen
name2 Jouko
keyword independent component analysis
keyword blind source separation
keyword FastICA
keyword efica
keyword Cramer-Rao lower bound
author (primary)
ARLID cav_un_auth*0108100
name1 Koldovský
name2 Zbyněk
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101212
name1 Tichavský
name2 Petr
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
full_dept Department of Stochastic Informatics
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/SI/tichavsky-0444036.pdf
cas_special
project
project_id GA14-13713S
agency GA ČR
country CZ
ARLID cav_un_auth*0303443
abstract (eng) The article presents a survey of improved variants of the famous FastICA algorithm for Independent Component Analysis. Variants of the algorithm tailored to separate mixtures of stationary non-Gaussian signals and mixtures of nonstationary (block-wise stationary) non-Gaussian signals are described. Performance analyses of the algorithms are given and compared to the respective Cramer-Rao lower bounds. The behavior of FastICA variants when additive noise is present in the signal mixture is studied through a bias analysis.
reportyear 2016
RIV BB
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0246783
confidential S
arlyear 2015
mrcbU63 cav_un_epca*0444035 Advances in Independent Component Analysis and Learning Machines 978-0-12-802806-3 53 74 Londýn Elsevier 2015
mrcbU67 Bingham Ella 340
mrcbU67 Kaski Samuel 340
mrcbU67 Laaksonen Jorma 340
mrcbU67 Lampinen Jouko 340