bibtype |
J -
Journal Article
|
ARLID |
0444082 |
utime |
20240103210058.7 |
mtime |
20150519235959.9 |
SCOPUS |
84936965637 |
DOI |
10.1007/s10958-015-2374-9 |
title
(primary) (eng) |
A posteriori error estimates for two-phase obstacle problem |
specification |
page_count |
12 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0339452 |
ISSN |
1072-3374 |
title
|
Journal of Mathematical Sciences |
volume_id |
107 |
volume |
2 (2015) |
page_num |
324-335 |
|
keyword |
two-phase obstacle problem |
keyword |
a posteriori error estimate |
keyword |
finite element method |
keyword |
variational inequalities |
author
(primary) |
ARLID |
cav_un_auth*0316845 |
name1 |
Repin |
name2 |
S. |
country |
RU |
|
author
|
ARLID |
cav_un_auth*0292941 |
name1 |
Valdman |
name2 |
Jan |
full_dept (cz) |
Matematická teorie rozhodování |
full_dept |
Department of Decision Making Theory |
department (cz) |
MTR |
department |
MTR |
institution |
UTIA-B |
full_dept |
Department of Decision Making Theory |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
project |
project_id |
GA13-18652S |
agency |
GA ČR |
ARLID |
cav_un_auth*0292653 |
|
abstract
(eng) |
For the two-phase obstacle problem we derive the basic error identity which yields natural measure of the distance to the exact solution. For this measure we derive a computable majorant valid for any function in the admissible (energy) class of functions. It is proved that the majorant vanishes if and only if the function coincides with the minimizer. It is shown that the respective estimate has no gap, so that accuracy of any approximation can be evaluated with any desired accuracy. |
reportyear |
2016 |
RIV |
BA |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0246679 |
confidential |
S |
mrcbT16-s |
0.300 |
mrcbT16-4 |
Q3 |
mrcbT16-E |
Q4 |
arlyear |
2015 |
mrcbU14 |
84936965637 SCOPUS |
mrcbU63 |
cav_un_epca*0339452 Journal of Mathematical Sciences 1072-3374 Roč. 107 č. 2 2015 324 335 |
|