bibtype J - Journal Article
ARLID 0444082
utime 20240103210058.7
mtime 20150519235959.9
SCOPUS 84936965637
DOI 10.1007/s10958-015-2374-9
title (primary) (eng) A posteriori error estimates for two-phase obstacle problem
specification
page_count 12 s.
media_type P
serial
ARLID cav_un_epca*0339452
ISSN 1072-3374
title Journal of Mathematical Sciences
volume_id 107
volume 2 (2015)
page_num 324-335
keyword two-phase obstacle problem
keyword a posteriori error estimate
keyword finite element method
keyword variational inequalities
author (primary)
ARLID cav_un_auth*0316845
name1 Repin
name2 S.
country RU
author
ARLID cav_un_auth*0292941
name1 Valdman
name2 Jan
full_dept (cz) Matematická teorie rozhodování
full_dept Department of Decision Making Theory
department (cz) MTR
department MTR
institution UTIA-B
full_dept Department of Decision Making Theory
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/MTR/valdman-0444082.pdf
cas_special
project
project_id GA13-18652S
agency GA ČR
ARLID cav_un_auth*0292653
abstract (eng) For the two-phase obstacle problem we derive the basic error identity which yields natural measure of the distance to the exact solution. For this measure we derive a computable majorant valid for any function in the admissible (energy) class of functions. It is proved that the majorant vanishes if and only if the function coincides with the minimizer. It is shown that the respective estimate has no gap, so that accuracy of any approximation can be evaluated with any desired accuracy.
reportyear 2016
RIV BA
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0246679
confidential S
mrcbT16-s 0.300
mrcbT16-4 Q3
mrcbT16-E Q4
arlyear 2015
mrcbU14 84936965637 SCOPUS
mrcbU63 cav_un_epca*0339452 Journal of Mathematical Sciences 1072-3374 Roč. 107 č. 2 2015 324 335