bibtype J - Journal Article
ARLID 0444111
utime 20240103210100.9
mtime 20150528235959.9
WOS 000341466500030
SCOPUS 84907360474
DOI 10.1016/j.ress.2014.04.015
title (primary) (eng) On selection of optimal stochastic model for accelerated life testing
specification
page_count 7 s.
media_type P
serial
ARLID cav_un_epca*0254891
ISSN 0951-8320
title Reliability Engineering & System Safety
volume_id 131
volume 1 (2014)
page_num 291-297
publisher
name Elsevier
keyword Reliability analysis
keyword Goodness-of-fit
keyword Bayes statistics
author (primary)
ARLID cav_un_auth*0101227
name1 Volf
name2 Petr
full_dept (cz) Stochastická informatika
full_dept (eng) Department of Stochastic Informatics
department (cz) SI
department (eng) SI
institution UTIA-B
full_dept Department of Stochastic Informatics
garant K
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0257680
name1 Timková
name2 Jana
full_dept (cz) Stochastická informatika
full_dept Department of Stochastic Informatics
department (cz) SI
department SI
institution UTIA-B
share 50
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/SI/volf-0444111.pdf
cas_special
abstract (eng) This paper deals with the problem of proper lifetime model selection in the context of statistical reliability analysis. Namely, we consider regression models describing the dependence of failure intensities on a covariate, for instance a stressor. Testing the model fit is standardly based on the so-called martingale residuals. Their analysis has already been studied by many authors. Nevertheless, the Bayes approach to the problem is just developing. We shall present the Bayes procedure of stimation in several semi-parametric regression models of failure intensity. Then, our main concern is the Bayes construction of residual processes and goodness-of-fit tests basedon them.
reportyear 2016
RIV BB
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0246859
confidential S
mrcbT16-e ENGINEERINGINDUSTRIAL|OPERATIONSRESEARCHMANAGEMENTSCIENCE
mrcbT16-j 0.826
mrcbT16-s 1.419
mrcbT16-4 Q1
mrcbT16-B 73.593
mrcbT16-C 90.683
mrcbT16-D Q2
mrcbT16-E Q1
arlyear 2014
mrcbU14 84907360474 SCOPUS
mrcbU34 000341466500030 WOS
mrcbU63 cav_un_epca*0254891 Reliability Engineering & System Safety 0951-8320 1879-0836 Roč. 131 č. 1 2014 291 297 Elsevier