bibtype J - Journal Article
ARLID 0444723
utime 20240103210152.3
mtime 20150625235959.9
WOS 000353350200008
SCOPUS 84939997157
DOI 10.1016/j.patrec.2015.02.012
title (primary) (eng) Unsupervised detection of non-iris occlusions
specification
page_count 6 s.
serial
ARLID cav_un_epca*0257389
ISSN 0167-8655
title Pattern Recognition Letters
volume_id 57
volume 5 (2015)
page_num 60-65
publisher
name Elsevier
keyword Iris recognition
keyword Color
keyword Markov random field
keyword Texture
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0292156
name1 Krupička
name2 Mikuláš
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/RO/haindl-0444723.pdf
cas_special
project
project_id GA14-10911S
agency GA ČR
country CZ
ARLID cav_un_auth*0303439
abstract (eng) This paper presents a fast precise unsupervised iris defects detection method based on the underlying multispectral spatial probabilistic iris textural model and adaptive thresholding applied to demanding high resolution mobile device measurements. The accurate detection of iris eyelids and reflections is the prerequisite for the accurate iris recognition, both in near-infrared or visible spectrum measurements. The model adaptively learns its parameters on the iris texture part and subsequently checks for iris reflections using the recursive prediction analysis. The method is developed for color eye images from unconstrained mobile devices but it was also successfully tested on the UBIRIS v2 eye database. Our method ranked first from the 97+1 recent Noisy Iris Challenge Evaluation contest alternative methods on this large color iris database using the exact contest data and methodology.
reportyear 2016
RIV BD
num_of_auth 2
mrcbC52 4 A hod 4ah 20231122141013.3
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0247504
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
mrcbT16-e COMPUTERSCIENCEARTIFICIALINTELLIGENCE
mrcbT16-j 0.734
mrcbT16-s 0.950
mrcbT16-4 Q1
mrcbT16-B 60.575
mrcbT16-C 55.000
mrcbT16-D Q2
mrcbT16-E Q2
arlyear 2015
mrcbTft \nSoubory v repozitáři: haindl-0444723.pdf
mrcbU14 84939997157 SCOPUS
mrcbU34 000353350200008 WOS
mrcbU63 cav_un_epca*0257389 Pattern Recognition Letters 0167-8655 1872-7344 Roč. 57 č. 5 2015 60 65 Elsevier