bibtype M - Monography Chapter
ARLID 0445250
utime 20240103210234.3
mtime 20150723235959.9
DOI 10.5772/60988
title (primary) (eng) Digital Mammogram Enhancement
specification
page_count 16 s.
media_type P
book_pages 120
serial
ARLID cav_un_epca*0445249
ISBN 978-953-51-2138-1
title Mammography Techniques and Review
page_num 63-78
publisher
place Zagreb
name InTech Education and Publishing
year 2015
editor
name1 Fernandes
name2 Fabiano Cavalcanti
editor
name1 Brasil
name2 Lourdes Mattos
editor
name1 da Veiga Guadagnin
name2 Renato
keyword mammogram enhancement
keyword Markov random field
keyword texture model
author (primary)
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0286710
name1 Remeš
name2 Václav
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/RO/haindl-0445250.pdf
cas_special
project
project_id GA14-10911S
agency GA ČR
country CZ
ARLID cav_un_auth*0303439
abstract (eng) Three fully automatic methods for X-ray digital mammogram enhancement based on a fast analytical textural model are presented. These efficient single and double view enhancement methods are based on the underlying two-dimensional adaptive causal autoregressive texture model. The~methods locally predict breast tissue texture from single or double view mammograms and enhance breast tissue abnormalities, such as the sign of a developing cancer, using the estimated model prediction statistics. The~double-view mammogram enhancement is based on the cross-prediction of two mutually registered left and right breasts' mammograms or alternatively a temporal sequence of mammograms. The single-view mammogram enhancement is based on modeling prediction error in case of not the both breasts' mammograms being available.
reportyear 2016
RIV BD
num_of_auth 2
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0247980
confidential S
arlyear 2015
mrcbU63 cav_un_epca*0445249 Mammography Techniques and Review 978-953-51-2138-1 63 78 Zagreb InTech Education and Publishing 2015
mrcbU67 Fernandes Fabiano Cavalcanti 340
mrcbU67 Brasil Lourdes Mattos 340
mrcbU67 da Veiga Guadagnin Renato 340