bibtype J - Journal Article
ARLID 0445995
utime 20240103210313.5
mtime 20150723235959.9
WOS 000358569400032
SCOPUS 84937682939
DOI 10.1109/JSTARS.2015.2416656
title (primary) (eng) Benchmarking of Remote Sensing Segmentation Methods
specification
page_count 9 s.
media_type P
serial
ARLID cav_un_epca*0344460
ISSN 1939-1404
title IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
volume_id 8
volume 5 (2015)
page_num 2240-2248
keyword benchmark
keyword remote sensing segmentation
keyword unsupervised segmentation
keyword supervised segmentation
author (primary)
ARLID cav_un_auth*0101165
name1 Mikeš
name2 Stanislav
full_dept (cz) Rozpoznávání obrazu
full_dept (eng) Department of Pattern Recognition
department (cz) RO
department (eng) RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101093
name1 Haindl
name2 Michal
full_dept (cz) Rozpoznávání obrazu
full_dept Department of Pattern Recognition
department (cz) RO
department RO
institution UTIA-B
full_dept Department of Pattern Recognition
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0216377
name1 Scarpa
name2 G.
country IT
author
ARLID cav_un_auth*0253271
name1 Gaetano
name2 R.
country IT
source
url http://library.utia.cas.cz/separaty/2015/RO/haindl-0445995.pdf
cas_special
project
project_id GA14-10911S
agency GA ČR
country CZ
ARLID cav_un_auth*0303439
abstract (eng) We present the enrichment of the Prague Texture Segmentation Data Generator and Benchmark (PTSDB) to include assessment of the remote sensing image segmenters. The PTSDB tool is a web-based (http://mosaic.utia.cas.cz) service designed for real-time performance evaluation, mutual comparison, and ranking of various supervised or unsupervised static or dynamic image segmenters. PTSDB supports rapid verification and development of new segmentation approaches. The remote sensing datasets contain ten-spectral ALI satellite images, their RGB subsets, and very-high-resolution GeoEye RGB images, with optional additive-noise-resistance checking. Alternative setting options allow us to also test scale, rotation or illumination invariance. The meaningfulness of the newly proposed dataset is demonstrated by testing and comparing several remote sensing segmentation algorithms, and showing that the benchmark figures provide a solid framework for the fair and critical comparison among different techniques.
reportyear 2016
RIV BD
num_of_auth 4
mrcbC52 4 A hod 4ah 20231122141043.5
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0247991
mrcbC64 1 Department of Pattern Recognition UTIA-B 10201 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
confidential S
mrcbT16-e ENGINEERINGELECTRICALELECTRONIC|GEOGRAPHYPHYSICAL|IMAGINGSCIENCEPHOTOGRAPHICTECHNOLOGY|REMOTESENSING
mrcbT16-j 0.707
mrcbT16-s 1.536
mrcbT16-4 Q1
mrcbT16-B 54.902
mrcbT16-C 67.510
mrcbT16-D Q2
mrcbT16-E Q3
arlyear 2015
mrcbTft \nSoubory v repozitáři: haindl-0445995.pdf
mrcbU14 84937682939 SCOPUS
mrcbU34 000358569400032 WOS
mrcbU63 cav_un_epca*0344460 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1939-1404 2151-1535 Roč. 8 č. 5 2015 2240 2248