bibtype C - Conference Paper (international conference)
ARLID 0446091
utime 20240103210322.9
mtime 20150806235959.9
SCOPUS 84943513835
WOS 000381618600081
title (primary) (eng) Estimation of Uniform Static Regression Model with Abruptly Varying Parameters
specification
page_count 5 s.
media_type P
serial
ARLID cav_un_epca*0446089
ISBN 978-989-758-122-9
title Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics
part_num 1
part_title Volume 1
page_num 603-607
publisher
place Portugal
name SCITEPRESS – Science and Technology Publications
year 2015
editor
name1 Filipe
name2 J.
editor
name1 Madani
name2 K.
editor
name1 Gusikhin
name2 O.
editor
name1 Sasiadek
name2 J.
keyword Sensor Condition
keyword Abrupt Change
keyword Signal Variance
keyword Uniform Distribution
author (primary)
ARLID cav_un_auth*0101119
full_dept (cz) Adaptivní systémy
full_dept (eng) Department of Adaptive Systems
department (cz) AS
department (eng) AS
full_dept Department of Adaptive Systems
name1 Jirsa
name2 Ladislav
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0101175
full_dept (cz) Adaptivní systémy
full_dept Department of Adaptive Systems
department (cz) AS
department AS
full_dept Department of Adaptive Systems
name1 Pavelková
name2 Lenka
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
source
url http://library.utia.cas.cz/separaty/2015/AS/jirsa-0446091.pdf
cas_special
project
ARLID cav_un_auth*0291242
project_id 7D12004
agency GA MŠk
abstract (eng) A modular framework for monitoring complex systems contains blocks that evaluate condition of single signals, typically of sensors. The signals are modelled and their values must be found within the prescribed bounds. However, an abrupt change of the signal ncreases the estimated parameters’ variance, which raises uncertainty of the sensor condition although it operates correctly. This increase affects the whole system in evaluation of condition uncertainty. The solution must be fast and simple, because of runtime application requirements. The signal is modelled by a static model with uniform noise, variance increase is tested and if detected, the model memory is cleared. The fast and efficient algorithm is demonstrated on industrial rolling data. The method prevents the parameters’ variance from the artificial increase.
action
ARLID cav_un_auth*0318350
name 12th International Conference on Informatics in Control, Automation and Robotics - ICINCO 2015
dates 21.07.2015-23.07.2015
place Colmar
country FR
RIV BC
reportyear 2016
num_of_auth 2
presentation_type PO
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0248315
confidential S
arlyear 2015
mrcbU14 84943513835 SCOPUS
mrcbU34 000381618600081 WOS
mrcbU63 cav_un_epca*0446089 Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics Volume 1 1 978-989-758-122-9 603 607 Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics Portugal SCITEPRESS – Science and Technology Publications 2015
mrcbU67 Filipe J. 340
mrcbU67 Madani K. 340
mrcbU67 Gusikhin O. 340
mrcbU67 Sasiadek J. 340