bibtype C - Conference Paper (international conference)
ARLID 0446538
utime 20240111140906.4
mtime 20150818235959.9
SCOPUS 84940945621
WOS 000370259201123
DOI 10.1109/ACC.2015.7170973
title (primary) (eng) Identification and Energy Efficient Control for a Building: Getting Inspired by MPC
specification
page_count 6 s.
media_type C
serial
ARLID cav_un_epca*0446537
ISBN 978-1-4799-8684-2
ISSN 0743-1619
title Proceedings of the American Control Conference 2015
page_num 1671-1676
publisher
place Chicago, IL
name IEEE
year 2015
keyword Identification
keyword Model predictive control
keyword Building climate control
author (primary)
ARLID cav_un_auth*0305702
name1 Žáčeková
name2 E.
country CZ
author
ARLID cav_un_auth*0281469
name1 Pčolka
name2 M.
country CZ
author
ARLID cav_un_auth*0318861
name1 Tabaček
name2 J.
country CZ
author
ARLID cav_un_auth*0318862
name1 Těžký
name2 J.
country CZ
author
ARLID cav_un_auth*0304632
name1 Robinett
name2 R.
country US
author
ARLID cav_un_auth*0101074
full_dept (cz) Teorie řízení
full_dept Department of Control Theory
department (cz)
department TR
full_dept Department of Control Theory
name1 Čelikovský
name2 Sergej
institution UTIA-B
fullinstit Ústav teorie informace a automatizace AV ČR, v. v. i.
author
ARLID cav_un_auth*0021057
name1 Šebek
name2 M.
country CZ
source
source_type textový dokument
source_size 747 Kb
cas_special
project
ARLID cav_un_auth*0292613
project_id GA13-20433S
agency GA ČR
abstract (eng) This paper deals with identification of a building model based on real-life data and subsequent temperature controller design. For the identification, advanced identification technique - namely MPC Relevant Identification method - is used. This approach has the capability of providing models with better prediction performance compared to the commonly used methods. Regarding the controller part, several alternatives are proposed. First, both linear and nonlinear MPC controlling the zone temperature are designed. Although highly attractive due to promising energetic savings and thermal comfort satisfaction, MPCs demand high computational power. To overcome this issue and preserve the attractive properties of the MPC, two MPC-learned feedback controllers are proposed, one learned from LMPC and the other learned from NMPC. While remaining computationally low-cost, they improve the performance of the classical controllers towards the high-performance MPC standards.
action
ARLID cav_un_auth*0318772
name American Control Conference (ACC), 2015
dates 01.07.2015-03.07.2015
place Chicago
country US
RIV BC
reportyear 2016
num_of_auth 7
presentation_type PR
inst_support RVO:67985556
permalink http://hdl.handle.net/11104/0248528
cooperation
ARLID cav_un_auth*0300364
name Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague
institution ČVUT FEL v Praze
country CZ
confidential S
mrcbC86 n.a. Proceedings Paper Automation Control Systems|Engineering Electrical Electronic
mrcbT16-s 0.565
mrcbT16-E Q2
arlyear 2015
mrcbU14 84940945621 SCOPUS
mrcbU34 000370259201123 WOS
mrcbU56 textový dokument 747 Kb
mrcbU63 cav_un_epca*0446537 Proceedings of the American Control Conference 2015 978-1-4799-8684-2 0743-1619 1671 1676 Chicago, IL IEEE 2015