| bibtype |
J -
Journal Article
|
| ARLID |
0446629 |
| utime |
20240103210428.3 |
| mtime |
20150922235959.9 |
| WOS |
000359161800003 |
| SCOPUS |
84938910323 |
| DOI |
10.1515/fca-2015-0052 |
| title
(primary) (eng) |
A (star)-BASED MINKOWSKI'S INEQUALITY FOR SUGENO FRACTIONAL INTEGRAL OF ORDER alpha > 0 |
| specification |
| page_count |
13 s. |
| media_type |
P |
|
| serial |
| ARLID |
cav_un_epca*0430830 |
| ISSN |
1311-0454 |
| title
|
Fractional Calculus and Applied Analysis |
| volume_id |
18 |
| volume |
4 (2015) |
| page_num |
862-874 |
|
| keyword |
fuzzy integral |
| keyword |
Sugeno fractional integral |
| keyword |
Minkowski's inequality |
| author
(primary) |
| ARLID |
cav_un_auth*0318949 |
| name1 |
Babkhani |
| name2 |
A. |
| country |
IR |
| share |
25 |
|
| author
|
| ARLID |
cav_un_auth*0261431 |
| name1 |
Agahi |
| name2 |
H. |
| country |
IR |
| garant |
K |
| share |
40 |
|
| author
|
| ARLID |
cav_un_auth*0101163 |
| name1 |
Mesiar |
| name2 |
Radko |
| full_dept (cz) |
Ekonometrie |
| full_dept |
Department of Econometrics |
| department (cz) |
E |
| department |
E |
| institution |
UTIA-B |
| full_dept |
Department of Econometrics |
| garant |
S |
| share |
35 |
| fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
| source |
|
| cas_special |
| abstract
(eng) |
We first introduce the concept of Sugeno fractional integral based on the concept of g-seminorm. Then Minkowski's inequality for Sugeno fractional integral of the order alpha > 0 based on two binary operations * is given. Our results significantly generalize the previous results in this field of fuzzy measure and fuzzy integral. Some examples are given to illustrate the results. |
| reportyear |
2016 |
| RIV |
BA |
| num_of_auth |
3 |
| inst_support |
RVO:67985556 |
| permalink |
http://hdl.handle.net/11104/0249421 |
| confidential |
S |
| mrcbT16-e |
MATHEMATICS |
| mrcbT16-g |
0.333 |
| mrcbT16-h |
4.3 |
| mrcbT16-i |
0.00247 |
| mrcbT16-k |
867 |
| mrcbT16-s |
1.551 |
| mrcbT16-4 |
Q1 |
| mrcbT16-5 |
1.730 |
| mrcbT16-6 |
81 |
| mrcbT16-7 |
Q1 |
| mrcbT16-C |
93.1 |
| mrcbT16-E |
Q1* |
| mrcbT16-P |
96.955 |
| arlyear |
2015 |
| mrcbU14 |
84938910323 SCOPUS |
| mrcbU34 |
000359161800003 WOS |
| mrcbU63 |
cav_un_epca*0430830 Fractional Calculus and Applied Analysis 1311-0454 1314-2224 Roč. 18 č. 4 2015 862 874 |
|