bibtype |
J -
Journal Article
|
ARLID |
0446629 |
utime |
20240103210428.3 |
mtime |
20150922235959.9 |
WOS |
000359161800003 |
SCOPUS |
84938910323 |
DOI |
10.1515/fca-2015-0052 |
title
(primary) (eng) |
A (star)-BASED MINKOWSKI'S INEQUALITY FOR SUGENO FRACTIONAL INTEGRAL OF ORDER alpha > 0 |
specification |
page_count |
13 s. |
media_type |
P |
|
serial |
ARLID |
cav_un_epca*0430830 |
ISSN |
1311-0454 |
title
|
Fractional Calculus and Applied Analysis |
volume_id |
18 |
volume |
4 (2015) |
page_num |
862-874 |
|
keyword |
fuzzy integral |
keyword |
Sugeno fractional integral |
keyword |
Minkowski's inequality |
author
(primary) |
ARLID |
cav_un_auth*0318949 |
name1 |
Babkhani |
name2 |
A. |
country |
IR |
share |
25 |
|
author
|
ARLID |
cav_un_auth*0261431 |
name1 |
Agahi |
name2 |
H. |
country |
IR |
garant |
K |
share |
40 |
|
author
|
ARLID |
cav_un_auth*0101163 |
name1 |
Mesiar |
name2 |
Radko |
full_dept (cz) |
Ekonometrie |
full_dept |
Department of Econometrics |
department (cz) |
E |
department |
E |
institution |
UTIA-B |
full_dept |
Department of Econometrics |
garant |
S |
share |
35 |
fullinstit |
Ústav teorie informace a automatizace AV ČR, v. v. i. |
|
source |
|
cas_special |
abstract
(eng) |
We first introduce the concept of Sugeno fractional integral based on the concept of g-seminorm. Then Minkowski's inequality for Sugeno fractional integral of the order alpha > 0 based on two binary operations * is given. Our results significantly generalize the previous results in this field of fuzzy measure and fuzzy integral. Some examples are given to illustrate the results. |
reportyear |
2016 |
RIV |
BA |
num_of_auth |
3 |
inst_support |
RVO:67985556 |
permalink |
http://hdl.handle.net/11104/0249421 |
confidential |
S |
mrcbT16-e |
MATHEMATICS |
mrcbT16-s |
1.551 |
mrcbT16-4 |
Q1 |
mrcbT16-C |
93.084 |
mrcbT16-E |
Q1* |
arlyear |
2015 |
mrcbU14 |
84938910323 SCOPUS |
mrcbU34 |
000359161800003 WOS |
mrcbU63 |
cav_un_epca*0430830 Fractional Calculus and Applied Analysis 1311-0454 1314-2224 Roč. 18 č. 4 2015 862 874 |
|